Properties

Label 30576w
Number of curves $4$
Conductor $30576$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("w1")
 
E.isogeny_class()
 

Elliptic curves in class 30576w

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30576.cc3 30576w1 \([0, 1, 0, -359, 1392]\) \(2725888/1053\) \(1982150352\) \([2]\) \(12288\) \(0.48293\) \(\Gamma_0(N)\)-optimal
30576.cc2 30576w2 \([0, 1, 0, -2564, -49764]\) \(61918288/1521\) \(45809697024\) \([2, 2]\) \(24576\) \(0.82951\)  
30576.cc4 30576w3 \([0, 1, 0, 376, -154428]\) \(48668/85683\) \(-10322451729408\) \([2]\) \(49152\) \(1.1761\)  
30576.cc1 30576w4 \([0, 1, 0, -40784, -3183804]\) \(62275269892/39\) \(4698430464\) \([2]\) \(49152\) \(1.1761\)  

Rank

sage: E.rank()
 

The elliptic curves in class 30576w have rank \(1\).

Complex multiplication

The elliptic curves in class 30576w do not have complex multiplication.

Modular form 30576.2.a.w

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - q^{13} - 2 q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.