Properties

Label 306.c
Number of curves $4$
Conductor $306$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 306.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
306.c1 306a3 \([1, -1, 1, -6755, 163235]\) \(46753267515625/11591221248\) \(8450000289792\) \([6]\) \(576\) \(1.1907\)  
306.c2 306a1 \([1, -1, 1, -2300, -41857]\) \(1845026709625/793152\) \(578207808\) \([2]\) \(192\) \(0.64143\) \(\Gamma_0(N)\)-optimal
306.c3 306a2 \([1, -1, 1, -1940, -55681]\) \(-1107111813625/1228691592\) \(-895716170568\) \([2]\) \(384\) \(0.98800\)  
306.c4 306a4 \([1, -1, 1, 16285, 1020323]\) \(655215969476375/1001033261568\) \(-729753247683072\) \([6]\) \(1152\) \(1.5373\)  

Rank

sage: E.rank()
 

The elliptic curves in class 306.c have rank \(0\).

Complex multiplication

The elliptic curves in class 306.c do not have complex multiplication.

Modular form 306.2.a.c

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{7} + q^{8} + 2 q^{13} + 2 q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.