Properties

Label 306.c
Number of curves 44
Conductor 306306
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 306.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
306.c1 306a3 [1,1,1,6755,163235][1, -1, 1, -6755, 163235] 46753267515625/1159122124846753267515625/11591221248 84500002897928450000289792 [6][6] 576576 1.19071.1907  
306.c2 306a1 [1,1,1,2300,41857][1, -1, 1, -2300, -41857] 1845026709625/7931521845026709625/793152 578207808578207808 [2][2] 192192 0.641430.64143 Γ0(N)\Gamma_0(N)-optimal
306.c3 306a2 [1,1,1,1940,55681][1, -1, 1, -1940, -55681] 1107111813625/1228691592-1107111813625/1228691592 895716170568-895716170568 [2][2] 384384 0.988000.98800  
306.c4 306a4 [1,1,1,16285,1020323][1, -1, 1, 16285, 1020323] 655215969476375/1001033261568655215969476375/1001033261568 729753247683072-729753247683072 [6][6] 11521152 1.53731.5373  

Rank

sage: E.rank()
 

The elliptic curves in class 306.c have rank 00.

Complex multiplication

The elliptic curves in class 306.c do not have complex multiplication.

Modular form 306.2.a.c

sage: E.q_eigenform(10)
 
q+q2+q4+2q7+q8+2q13+2q14+q16+q174q19+O(q20)q + q^{2} + q^{4} + 2 q^{7} + q^{8} + 2 q^{13} + 2 q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1362312662132631)\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.