Show commands:
SageMath
E = EllipticCurve("js1")
E.isogeny_class()
Elliptic curves in class 308550js
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
308550.js2 | 308550js1 | \([1, 0, 0, 42287, -8873083]\) | \(302111711/1404540\) | \(-38878566983437500\) | \([2]\) | \(2764800\) | \(1.8656\) | \(\Gamma_0(N)\)-optimal |
308550.js1 | 308550js2 | \([1, 0, 0, -471963, -111208833]\) | \(420021471169/50191650\) | \(1389337026025781250\) | \([2]\) | \(5529600\) | \(2.2122\) |
Rank
sage: E.rank()
The elliptic curves in class 308550js have rank \(0\).
Complex multiplication
The elliptic curves in class 308550js do not have complex multiplication.Modular form 308550.2.a.js
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.