Properties

Label 30a
Number of curves 88
Conductor 3030
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 30a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30.a8 30a1 [1,0,1,1,2][1, 0, 1, 1, 2] 357911/2160357911/2160 2160-2160 [6][6] 22 0.67829-0.67829 Γ0(N)\Gamma_0(N)-optimal
30.a6 30a2 [1,0,1,19,26][1, 0, 1, -19, 26] 702595369/72900702595369/72900 7290072900 [2,6][2, 6] 44 0.33171-0.33171  
30.a7 30a3 [1,0,1,14,64][1, 0, 1, -14, -64] 273359449/1536000-273359449/1536000 1536000-1536000 [2][2] 66 0.12898-0.12898  
30.a5 30a4 [1,0,1,69,194][1, 0, 1, -69, -194] 35578826569/531441035578826569/5314410 53144105314410 [6][6] 88 0.0148600.014860  
30.a4 30a5 [1,0,1,289,1862][1, 0, 1, -289, 1862] 2656166199049/337502656166199049/33750 3375033750 [6][6] 88 0.0148600.014860  
30.a3 30a6 [1,0,1,334,2368][1, 0, 1, -334, -2368] 4102915888729/90000004102915888729/9000000 90000009000000 [2,2][2, 2] 1212 0.217590.21759  
30.a1 30a7 [1,0,1,5334,150368][1, 0, 1, -5334, -150368] 16778985534208729/8100016778985534208729/81000 8100081000 [2][2] 2424 0.564170.56417  
30.a2 30a8 [1,0,1,454,544][1, 0, 1, -454, -544] 10316097499609/585937500010316097499609/5859375000 58593750005859375000 [2][2] 2424 0.564170.56417  

Rank

sage: E.rank()
 

The elliptic curves in class 30a have rank 00.

Complex multiplication

The elliptic curves in class 30a do not have complex multiplication.

Modular form 30.2.a.a

sage: E.q_eigenform(10)
 
qq2+q3+q4q5q64q7q8+q9+q10+q12+2q13+4q14q15+q16+6q17q184q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} + 4 q^{14} - q^{15} + q^{16} + 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1234461212216223663611212244421214631242124161236326612212643122141264123241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.