E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 3120q
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3120.b3 |
3120q1 |
[0,−1,0,−96,−2304] |
−24137569/561600 |
−2300313600 |
[2] |
1152 |
0.47709
|
Γ0(N)-optimal |
3120.b2 |
3120q2 |
[0,−1,0,−3296,−71424] |
967068262369/4928040 |
20185251840 |
[2] |
2304 |
0.82366
|
|
3120.b4 |
3120q3 |
[0,−1,0,864,61440] |
17394111071/411937500 |
−1687296000000 |
[2] |
3456 |
1.0264
|
|
3120.b1 |
3120q4 |
[0,−1,0,−19136,973440] |
189208196468929/10860320250 |
44483871744000 |
[2] |
6912 |
1.3730
|
|
The elliptic curves in class 3120q have
rank 1.
The elliptic curves in class 3120q do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.