Properties

Label 3120q
Number of curves 44
Conductor 31203120
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 3120q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3120.b3 3120q1 [0,1,0,96,2304][0, -1, 0, -96, -2304] 24137569/561600-24137569/561600 2300313600-2300313600 [2][2] 11521152 0.477090.47709 Γ0(N)\Gamma_0(N)-optimal
3120.b2 3120q2 [0,1,0,3296,71424][0, -1, 0, -3296, -71424] 967068262369/4928040967068262369/4928040 2018525184020185251840 [2][2] 23042304 0.823660.82366  
3120.b4 3120q3 [0,1,0,864,61440][0, -1, 0, 864, 61440] 17394111071/41193750017394111071/411937500 1687296000000-1687296000000 [2][2] 34563456 1.02641.0264  
3120.b1 3120q4 [0,1,0,19136,973440][0, -1, 0, -19136, 973440] 189208196468929/10860320250189208196468929/10860320250 4448387174400044483871744000 [2][2] 69126912 1.37301.3730  

Rank

sage: E.rank()
 

The elliptic curves in class 3120q have rank 11.

Complex multiplication

The elliptic curves in class 3120q do not have complex multiplication.

Modular form 3120.2.a.q

sage: E.q_eigenform(10)
 
qq3q52q7+q9+q13+q152q19+O(q20)q - q^{3} - q^{5} - 2 q^{7} + q^{9} + q^{13} + q^{15} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.