Properties

Label 3120s3
Conductor 31203120
Discriminant 6.522×1018-6.522\times 10^{18}
j-invariant 168189511159044975611592332281446400 -\frac{16818951115904497561}{1592332281446400}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2854040x+327977712y^2=x^3-x^2-854040x+327977712 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z854040xz2+327977712z3y^2z=x^3-x^2z-854040xz^2+327977712z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x369177267x+238888220274y^2=x^3-69177267x+238888220274 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -854040, 327977712])
 
gp: E = ellinit([0, -1, 0, -854040, 327977712])
 
magma: E := EllipticCurve([0, -1, 0, -854040, 327977712]);
 
oscar: E = elliptic_curve([0, -1, 0, -854040, 327977712])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1076,0)(-1076, 0)0022

Integral points

(1076,0) \left(-1076, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  3120 3120  = 2435132^{4} \cdot 3 \cdot 5 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  6522193024804454400-6522193024804454400 = 12423352133-1 \cdot 2^{42} \cdot 3^{3} \cdot 5^{2} \cdot 13^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  168189511159044975611592332281446400 -\frac{16818951115904497561}{1592332281446400}  = 1230335213317329351973-1 \cdot 2^{-30} \cdot 3^{-3} \cdot 5^{-2} \cdot 13^{-3} \cdot 17^{3} \cdot 29^{3} \cdot 5197^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.35195964386091395942183497862.3519596438609139594218349786
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.65881246330096865000460285711.6588124633009686500046028571
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.03465382732129971.0346538273212997
Szpiro ratio: σm\sigma_{m} ≈ 6.5549366182672276.554936618267227

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.231993088877434188783342316570.23199308887743418878334231657
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 24 24  = 22123 2^{2}\cdot1\cdot2\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.39195853326460513270005389941.3919585332646051327000538994
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.391958533L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2319931.00000024221.391958533\displaystyle 1.391958533 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.231993 \cdot 1.000000 \cdot 24}{2^2} \approx 1.391958533

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   3120.2.a.j

qq3+q52q7+q9+q13q152q19+O(q20) q - q^{3} + q^{5} - 2 q^{7} + q^{9} + q^{13} - q^{15} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 51840
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I34I_{34}^{*} additive -1 4 42 30
33 11 I3I_{3} nonsplit multiplicative 1 1 3 3
55 22 I2I_{2} split multiplicative -1 1 2 2
1313 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1450, 3, 453, 1552], [937, 12, 942, 73], [1310, 3, 493, 1552], [781, 12, 6, 73], [1, 0, 12, 1], [1, 6, 6, 37], [1, 12, 0, 1], [11, 2, 1510, 1551], [1549, 12, 1548, 13], [1485, 1232, 1522, 1243]]
 
GL(2,Integers(1560)).subgroup(gens)
 
Gens := [[1450, 3, 453, 1552], [937, 12, 942, 73], [1310, 3, 493, 1552], [781, 12, 6, 73], [1, 0, 12, 1], [1, 6, 6, 37], [1, 12, 0, 1], [11, 2, 1510, 1551], [1549, 12, 1548, 13], [1485, 1232, 1522, 1243]];
 
sub<GL(2,Integers(1560))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1560=233513 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 , index 9696, genus 11, and generators

(145034531552),(9371294273),(131034931552),(78112673),(10121),(16637),(11201),(11215101551),(154912154813),(1485123215221243)\left(\begin{array}{rr} 1450 & 3 \\ 453 & 1552 \end{array}\right),\left(\begin{array}{rr} 937 & 12 \\ 942 & 73 \end{array}\right),\left(\begin{array}{rr} 1310 & 3 \\ 493 & 1552 \end{array}\right),\left(\begin{array}{rr} 781 & 12 \\ 6 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1510 & 1551 \end{array}\right),\left(\begin{array}{rr} 1549 & 12 \\ 1548 & 13 \end{array}\right),\left(\begin{array}{rr} 1485 & 1232 \\ 1522 & 1243 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1560])K:=\Q(E[1560]) is a degree-96613171209661317120 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1560Z)\GL_2(\Z/1560\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 39=313 39 = 3 \cdot 13
33 nonsplit multiplicative 44 80=245 80 = 2^{4} \cdot 5
55 split multiplicative 66 624=24313 624 = 2^{4} \cdot 3 \cdot 13
1313 split multiplicative 1414 240=2435 240 = 2^{4} \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 3120s consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

The minimal quadratic twist of this elliptic curve is 390d3, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(39)\Q(\sqrt{-39}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(3)\Q(\sqrt{3}) Z/6Z\Z/6\Z not in database
44 4.2.249600.4 Z/4Z\Z/4\Z not in database
44 Q(3,13)\Q(\sqrt{3}, \sqrt{-13}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.29160000.1 Z/6Z\Z/6\Z not in database
88 8.0.22519960070400.36 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.94758543360000.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.560701440000.17 Z/12Z\Z/12\Z not in database
1212 12.0.7652750400000000.2 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1818 18.6.1164324499062811233181320786739200000000.3 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 13
Reduction type add nonsplit split split
λ\lambda-invariant(s) - 2 1 1
μ\mu-invariant(s) - 0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.