Properties

Label 312650.be
Number of curves $3$
Conductor $312650$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("be1")
 
E.isogeny_class()
 

Elliptic curves in class 312650.be

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
312650.be1 312650be1 \([1, 1, 0, -226125, 41294375]\) \(-16954786009/370\) \(-27904989531250\) \([]\) \(1866240\) \(1.6960\) \(\Gamma_0(N)\)-optimal
312650.be2 312650be2 \([1, 1, 0, -78250, 94381500]\) \(-702595369/50653000\) \(-3820193066828125000\) \([]\) \(5598720\) \(2.2453\)  
312650.be3 312650be3 \([1, 1, 0, 703375, -2531096875]\) \(510273943271/37000000000\) \(-2790498953125000000000\) \([]\) \(16796160\) \(2.7946\)  

Rank

sage: E.rank()
 

The elliptic curves in class 312650.be have rank \(2\).

Complex multiplication

The elliptic curves in class 312650.be do not have complex multiplication.

Modular form 312650.2.a.be

sage: E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} - 2 q^{6} - q^{7} - q^{8} + q^{9} - 3 q^{11} + 2 q^{12} + q^{14} + q^{16} - 3 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.