Properties

Label 3136.d
Number of curves 22
Conductor 31363136
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 3136.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3136.d1 3136m2 [0,1,0,289,1791][0, 1, 0, -289, 1791] 238328238328 1123942411239424 [2][2] 10241024 0.207530.20753  
3136.d2 3136m1 [0,1,0,9,55][0, 1, 0, -9, 55] 64-64 1404928-1404928 [2][2] 512512 0.13904-0.13904 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3136.d have rank 22.

Complex multiplication

The elliptic curves in class 3136.d do not have complex multiplication.

Modular form 3136.2.a.d

sage: E.q_eigenform(10)
 
q2q32q5+q94q116q13+4q154q176q19+O(q20)q - 2 q^{3} - 2 q^{5} + q^{9} - 4 q^{11} - 6 q^{13} + 4 q^{15} - 4 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.