Properties

Label 3136bb
Number of curves $2$
Conductor $3136$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bb1")
 
E.isogeny_class()
 

Elliptic curves in class 3136bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3136.c2 3136bb1 \([0, 1, 0, -65, -11201]\) \(-4/7\) \(-53971714048\) \([2]\) \(3072\) \(0.73829\) \(\Gamma_0(N)\)-optimal
3136.c1 3136bb2 \([0, 1, 0, -7905, -269921]\) \(3543122/49\) \(755603996672\) \([2]\) \(6144\) \(1.0849\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3136bb have rank \(1\).

Complex multiplication

The elliptic curves in class 3136bb do not have complex multiplication.

Modular form 3136.2.a.bb

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} - 4 q^{5} + q^{9} + 8 q^{15} + 2 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.