Properties

Label 3136bb
Number of curves 22
Conductor 31363136
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bb1")
 
E.isogeny_class()
 

Elliptic curves in class 3136bb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3136.c2 3136bb1 [0,1,0,65,11201][0, 1, 0, -65, -11201] 4/7-4/7 53971714048-53971714048 [2][2] 30723072 0.738290.73829 Γ0(N)\Gamma_0(N)-optimal
3136.c1 3136bb2 [0,1,0,7905,269921][0, 1, 0, -7905, -269921] 3543122/493543122/49 755603996672755603996672 [2][2] 61446144 1.08491.0849  

Rank

sage: E.rank()
 

The elliptic curves in class 3136bb have rank 11.

Complex multiplication

The elliptic curves in class 3136bb do not have complex multiplication.

Modular form 3136.2.a.bb

sage: E.q_eigenform(10)
 
q2q34q5+q9+8q15+2q17+2q19+O(q20)q - 2 q^{3} - 4 q^{5} + q^{9} + 8 q^{15} + 2 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.