Properties

Label 3136c
Number of curves $1$
Conductor $3136$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 3136c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3136.b1 3136c1 \([0, 0, 0, -1372, -19208]\) \(48384\) \(5903156224\) \([]\) \(2688\) \(0.66517\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3136c1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3136c do not have complex multiplication.

Modular form 3136.2.a.c

sage: E.q_eigenform(10)
 
\(q - 3 q^{3} + q^{5} + 6 q^{9} + q^{11} - 2 q^{13} - 3 q^{15} + 3 q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display