Properties

Label 3136y2
Conductor 31363136
Discriminant 3.022×10123.022\times 10^{12}
j-invariant 12878762598 \frac{128787625}{98}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x232993x+2316161y^2=x^3-x^2-32993x+2316161 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z32993xz2+2316161z3y^2z=x^3-x^2z-32993xz^2+2316161z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32672460x+1680464016y^2=x^3-2672460x+1680464016 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -32993, 2316161])
 
gp: E = ellinit([0, -1, 0, -32993, 2316161])
 
magma: E := EllipticCurve([0, -1, 0, -32993, 2316161]);
 
oscar: E = elliptic_curve([0, -1, 0, -32993, 2316161])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(40,1029)(40, 1029)2.80678015005365090767834892592.8067801500536509076783489259\infty
(103,0)(103, 0)0022

Integral points

(40,±1029)(40,\pm 1029), (103,0) \left(103, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  3136 3136  = 26722^{6} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  30224159866883022415986688 = 219782^{19} \cdot 7^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  12878762598 \frac{128787625}{98}  = 21537210132^{-1} \cdot 5^{3} \cdot 7^{-2} \cdot 101^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.32716453712254938286406167181.3271645371225493828640616718
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.68551130824502523381446288211-0.68551130824502523381446288211
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96762776893923960.9676277689392396
Szpiro ratio: σm\sigma_{m} ≈ 5.3195085451546865.319508545154686

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.80678015005365090767834892592.8067801500536509076783489259
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.794303867747441110920403292010.79430386774744111092040329201
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 222 2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.45887265820871609380481925614.4588726582087160938048192561
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.458872658L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7943042.8067808224.458872658\displaystyle 4.458872658 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.794304 \cdot 2.806780 \cdot 8}{2^2} \approx 4.458872658

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   3136.2.a.z

q+2q3+q94q136q172q19+O(q20) q + 2 q^{3} + q^{9} - 4 q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6144
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I9I_{9}^{*} additive -1 6 19 1
77 44 I2I_{2}^{*} additive -1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.6
33 3B 9.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 36, 0, 1], [1, 0, 36, 1], [281, 36, 0, 1], [469, 36, 468, 37], [476, 477, 447, 206], [19, 36, 216, 91], [377, 468, 242, 143], [191, 468, 78, 239], [1, 18, 14, 253]]
 
GL(2,Integers(504)).subgroup(gens)
 
Gens := [[1, 36, 0, 1], [1, 0, 36, 1], [281, 36, 0, 1], [469, 36, 468, 37], [476, 477, 447, 206], [19, 36, 216, 91], [377, 468, 242, 143], [191, 468, 78, 239], [1, 18, 14, 253]];
 
sub<GL(2,Integers(504))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7 , index 864864, genus 2121, and generators

(13601),(10361),(2813601),(4693646837),(476477447206),(193621691),(377468242143),(19146878239),(11814253)\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 281 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 469 & 36 \\ 468 & 37 \end{array}\right),\left(\begin{array}{rr} 476 & 477 \\ 447 & 206 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 216 & 91 \end{array}\right),\left(\begin{array}{rr} 377 & 468 \\ 242 & 143 \end{array}\right),\left(\begin{array}{rr} 191 & 468 \\ 78 & 239 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[504])K:=\Q(E[504]) is a degree-1393459213934592 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/504Z)\GL_2(\Z/504\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 49=72 49 = 7^{2}
77 additive 3232 64=26 64 = 2^{6}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 6, 9 and 18.
Its isogeny class 3136y consists of 6 curves linked by isogenies of degrees dividing 18.

Twists

The minimal quadratic twist of this elliptic curve is 14a6, its twist by 5656.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(14)\Q(\sqrt{14}) Z/6Z\Z/6\Z 2.2.56.1-14.1-a5
44 4.0.392.1 Z/4Z\Z/4\Z not in database
44 Q(2,7)\Q(\sqrt{2}, \sqrt{7}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.929359872.2 Z/6Z\Z/6\Z not in database
66 6.6.8605184.1 Z/18Z\Z/18\Z not in database
88 8.4.40282095616.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.9834496.2 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.39337984.3 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 12.0.17626730034364416.2 Z/18Z\Z/18\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 Q(ζ56)+\Q(\zeta_{56})^+ Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 16.8.1622647227216566419456.1 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 16.0.24759631762948096.2 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord ss add ss ord ord ord ss ord ord ord ord ord ord
λ\lambda-invariant(s) - 7 1,1 - 1,1 1 1 1 1,1 1 1 1 1 1 1
μ\mu-invariant(s) - 0 0,0 - 0,0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.