Properties

Label 3150.i
Number of curves 66
Conductor 31503150
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 3150.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3150.i1 3150l6 [1,1,0,614367,185502541][1, -1, 0, -614367, 185502541] 2251439055699625/250882251439055699625/25088 285768000000285768000000 [2][2] 2073620736 1.76711.7671  
3150.i2 3150l5 [1,1,0,38367,2910541][1, -1, 0, -38367, 2910541] 548347731625/1835008-548347731625/1835008 20901888000000-20901888000000 [2][2] 1036810368 1.42061.4206  
3150.i3 3150l4 [1,1,0,7992,227416][1, -1, 0, -7992, 227416] 4956477625/9411924956477625/941192 1072076512500010720765125000 [2][2] 69126912 1.21781.2178  
3150.i4 3150l2 [1,1,0,2367,43709][1, -1, 0, -2367, -43709] 128787625/98128787625/98 11162812501116281250 [2][2] 23042304 0.668510.66851  
3150.i5 3150l1 [1,1,0,117,959][1, -1, 0, -117, -959] 15625/28-15625/28 318937500-318937500 [2][2] 11521152 0.321940.32194 Γ0(N)\Gamma_0(N)-optimal
3150.i6 3150l3 [1,1,0,1008,20416][1, -1, 0, 1008, 20416] 9938375/219529938375/21952 250047000000-250047000000 [2][2] 34563456 0.871250.87125  

Rank

sage: E.rank()
 

The elliptic curves in class 3150.i have rank 00.

Complex multiplication

The elliptic curves in class 3150.i do not have complex multiplication.

Modular form 3150.2.a.i

sage: E.q_eigenform(10)
 
qq2+q4q7q8+4q13+q14+q16+6q17+2q19+O(q20)q - q^{2} + q^{4} - q^{7} - q^{8} + 4 q^{13} + q^{14} + q^{16} + 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1239186216189336136291831261896213632631)\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 9 & 18 & 6 \\ 2 & 1 & 6 & 18 & 9 & 3 \\ 3 & 6 & 1 & 3 & 6 & 2 \\ 9 & 18 & 3 & 1 & 2 & 6 \\ 18 & 9 & 6 & 2 & 1 & 3 \\ 6 & 3 & 2 & 6 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.