E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 3168.a
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3168.a1 |
3168i3 |
[0,0,0,−2822691,1825337270] |
6663712298552914184/29403 |
10974610944 |
[4] |
30720 |
2.0131
|
|
3168.a2 |
3168i2 |
[0,0,0,−187356,24784544] |
243578556889408/52089208083 |
155537541908508672 |
[2] |
30720 |
2.0131
|
|
3168.a3 |
3168i1 |
[0,0,0,−176421,28519940] |
13015685560572352/864536409 |
40335810698304 |
[2,2] |
15360 |
1.6665
|
Γ0(N)-optimal |
3168.a4 |
3168i4 |
[0,0,0,−165531,32194226] |
−1343891598641864/421900912521 |
−157473671796638208 |
[2] |
30720 |
2.0131
|
|
The elliptic curves in class 3168.a have
rank 0.
The elliptic curves in class 3168.a do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.