Properties

Label 3168.a
Number of curves 44
Conductor 31683168
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 3168.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3168.a1 3168i3 [0,0,0,2822691,1825337270][0, 0, 0, -2822691, 1825337270] 6663712298552914184/294036663712298552914184/29403 1097461094410974610944 [4][4] 3072030720 2.01312.0131  
3168.a2 3168i2 [0,0,0,187356,24784544][0, 0, 0, -187356, 24784544] 243578556889408/52089208083243578556889408/52089208083 155537541908508672155537541908508672 [2][2] 3072030720 2.01312.0131  
3168.a3 3168i1 [0,0,0,176421,28519940][0, 0, 0, -176421, 28519940] 13015685560572352/86453640913015685560572352/864536409 4033581069830440335810698304 [2,2][2, 2] 1536015360 1.66651.6665 Γ0(N)\Gamma_0(N)-optimal
3168.a4 3168i4 [0,0,0,165531,32194226][0, 0, 0, -165531, 32194226] 1343891598641864/421900912521-1343891598641864/421900912521 157473671796638208-157473671796638208 [2][2] 3072030720 2.01312.0131  

Rank

sage: E.rank()
 

The elliptic curves in class 3168.a have rank 00.

Complex multiplication

The elliptic curves in class 3168.a do not have complex multiplication.

Modular form 3168.2.a.a

sage: E.q_eigenform(10)
 
q2q54q7q112q132q174q19+O(q20)q - 2 q^{5} - 4 q^{7} - q^{11} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.