Properties

Label 3168.a
Number of curves $4$
Conductor $3168$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 3168.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3168.a1 3168i3 \([0, 0, 0, -2822691, 1825337270]\) \(6663712298552914184/29403\) \(10974610944\) \([4]\) \(30720\) \(2.0131\)  
3168.a2 3168i2 \([0, 0, 0, -187356, 24784544]\) \(243578556889408/52089208083\) \(155537541908508672\) \([2]\) \(30720\) \(2.0131\)  
3168.a3 3168i1 \([0, 0, 0, -176421, 28519940]\) \(13015685560572352/864536409\) \(40335810698304\) \([2, 2]\) \(15360\) \(1.6665\) \(\Gamma_0(N)\)-optimal
3168.a4 3168i4 \([0, 0, 0, -165531, 32194226]\) \(-1343891598641864/421900912521\) \(-157473671796638208\) \([2]\) \(30720\) \(2.0131\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3168.a have rank \(0\).

Complex multiplication

The elliptic curves in class 3168.a do not have complex multiplication.

Modular form 3168.2.a.a

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} - 4 q^{7} - q^{11} - 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.