Properties

Label 3168.u
Number of curves 44
Conductor 31683168
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 3168.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3168.u1 3168m2 [0,0,0,4764,126560][0, 0, 0, -4764, -126560] 4004529472/994004529472/99 295612416295612416 [2][2] 20482048 0.734530.73453  
3168.u2 3168m3 [0,0,0,1299,16198][0, 0, 0, -1299, 16198] 649461896/72171649461896/72171 2693768140826937681408 [2][2] 20482048 0.734530.73453  
3168.u3 3168m1 [0,0,0,309,1820][0, 0, 0, -309, -1820] 69934528/980169934528/9801 457275456457275456 [2,2][2, 2] 10241024 0.387950.38795 Γ0(N)\Gamma_0(N)-optimal
3168.u4 3168m4 [0,0,0,501,9758][0, 0, 0, 501, -9758] 37259704/13176937259704/131769 49182515712-49182515712 [2][2] 20482048 0.734530.73453  

Rank

sage: E.rank()
 

The elliptic curves in class 3168.u have rank 11.

Complex multiplication

The elliptic curves in class 3168.u do not have complex multiplication.

Modular form 3168.2.a.u

sage: E.q_eigenform(10)
 
q+2q5+q116q132q174q19+O(q20)q + 2 q^{5} + q^{11} - 6 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.