E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 3168.u
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3168.u1 |
3168m2 |
[0,0,0,−4764,−126560] |
4004529472/99 |
295612416 |
[2] |
2048 |
0.73453
|
|
3168.u2 |
3168m3 |
[0,0,0,−1299,16198] |
649461896/72171 |
26937681408 |
[2] |
2048 |
0.73453
|
|
3168.u3 |
3168m1 |
[0,0,0,−309,−1820] |
69934528/9801 |
457275456 |
[2,2] |
1024 |
0.38795
|
Γ0(N)-optimal |
3168.u4 |
3168m4 |
[0,0,0,501,−9758] |
37259704/131769 |
−49182515712 |
[2] |
2048 |
0.73453
|
|
The elliptic curves in class 3168.u have
rank 1.
The elliptic curves in class 3168.u do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.