Properties

Label 3168.v
Number of curves $2$
Conductor $3168$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 3168.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3168.v1 3168e1 \([0, 0, 0, -1329, -18648]\) \(150229394496/1331\) \(2299968\) \([2]\) \(768\) \(0.38689\) \(\Gamma_0(N)\)-optimal
3168.v2 3168e2 \([0, 0, 0, -1299, -19530]\) \(-17535471192/1771561\) \(-24490059264\) \([2]\) \(1536\) \(0.73347\)  

Rank

sage: E.rank()
 

The elliptic curves in class 3168.v have rank \(0\).

Complex multiplication

The elliptic curves in class 3168.v do not have complex multiplication.

Modular form 3168.2.a.v

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{11} - 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.