sage: E = EllipticCurve([0, -1, 1, -34, 90])
gp: E = ellinit([0, -1, 1, -34, 90])
magma: E := EllipticCurve([0, -1, 1, -34, 90]);
oscar: E = elliptic_curve([0, -1, 1, -34, 90])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z ⊕ Z \Z \oplus \Z \oplus \Z Z ⊕ Z ⊕ Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 4 , 1 ) (4, 1) ( 4 , 1 ) 0.51778366711609425233935104370 0.51778366711609425233935104370 0 . 5 1 7 7 8 3 6 6 7 1 1 6 0 9 4 2 5 2 3 3 9 3 5 1 0 4 3 7 0 ∞ \infty ∞
( 1 , 7 ) (1, 7) ( 1 , 7 ) 1.0612319883744533831321253785 1.0612319883744533831321253785 1 . 0 6 1 2 3 1 9 8 8 3 7 4 4 5 3 3 8 3 1 3 2 1 2 5 3 7 8 5 ∞ \infty ∞
( 3 , 2 ) (3, 2) ( 3 , 2 ) 1.1733785477334163924772336958 1.1733785477334163924772336958 1 . 1 7 3 3 7 8 5 4 7 7 3 3 4 1 6 3 9 2 4 7 7 2 3 3 6 9 5 8 ∞ \infty ∞
( − 6 , 6 ) \left(-6, 6\right) ( − 6 , 6 ) , ( − 6 , − 7 ) \left(-6, -7\right) ( − 6 , − 7 ) , ( − 5 , 10 ) \left(-5, 10\right) ( − 5 , 1 0 ) , ( − 5 , − 11 ) \left(-5, -11\right) ( − 5 , − 1 1 ) , ( − 3 , 12 ) \left(-3, 12\right) ( − 3 , 1 2 ) , ( − 3 , − 13 ) \left(-3, -13\right) ( − 3 , − 1 3 ) , ( 0 , 9 ) \left(0, 9\right) ( 0 , 9 ) , ( 0 , − 10 ) \left(0, -10\right) ( 0 , − 1 0 ) , ( 1 , 7 ) \left(1, 7\right) ( 1 , 7 ) , ( 1 , − 8 ) \left(1, -8\right) ( 1 , − 8 ) , ( 3 , 2 ) \left(3, 2\right) ( 3 , 2 ) , ( 3 , − 3 ) \left(3, -3\right) ( 3 , − 3 ) , ( 4 , 1 ) \left(4, 1\right) ( 4 , 1 ) , ( 4 , − 2 ) \left(4, -2\right) ( 4 , − 2 ) , ( 5 , 4 ) \left(5, 4\right) ( 5 , 4 ) , ( 5 , − 5 ) \left(5, -5\right) ( 5 , − 5 ) , ( 10 , 25 ) \left(10, 25\right) ( 1 0 , 2 5 ) , ( 10 , − 26 ) \left(10, -26\right) ( 1 0 , − 2 6 ) , ( 14 , 46 ) \left(14, 46\right) ( 1 4 , 4 6 ) , ( 14 , − 47 ) \left(14, -47\right) ( 1 4 , − 4 7 ) , ( 22 , 97 ) \left(22, 97\right) ( 2 2 , 9 7 ) , ( 22 , − 98 ) \left(22, -98\right) ( 2 2 , − 9 8 ) , ( 28 , 142 ) \left(28, 142\right) ( 2 8 , 1 4 2 ) , ( 28 , − 143 ) \left(28, -143\right) ( 2 8 , − 1 4 3 ) , ( 289 , 4903 ) \left(289, 4903\right) ( 2 8 9 , 4 9 0 3 ) , ( 289 , − 4904 ) \left(289, -4904\right) ( 2 8 9 , − 4 9 0 4 ) , ( 301 , 5212 ) \left(301, 5212\right) ( 3 0 1 , 5 2 1 2 ) , ( 301 , − 5213 ) \left(301, -5213\right) ( 3 0 1 , − 5 2 1 3 ) , ( 1551 , 61062 ) \left(1551, 61062\right) ( 1 5 5 1 , 6 1 0 6 2 ) , ( 1551 , − 61063 ) \left(1551, -61063\right) ( 1 5 5 1 , − 6 1 0 6 3 ) , ( 710060 , 598332049 ) \left(710060, 598332049\right) ( 7 1 0 0 6 0 , 5 9 8 3 3 2 0 4 9 ) , ( 710060 , − 598332050 ) \left(710060, -598332050\right) ( 7 1 0 0 6 0 , − 5 9 8 3 3 2 0 5 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
31737 31737 3 1 7 3 7 = 3 ⋅ 71 ⋅ 149 3 \cdot 71 \cdot 149 3 ⋅ 7 1 ⋅ 1 4 9
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
− 95211 -95211 − 9 5 2 1 1 = − 1 ⋅ 3 2 ⋅ 71 ⋅ 149 -1 \cdot 3^{2} \cdot 71 \cdot 149 − 1 ⋅ 3 2 ⋅ 7 1 ⋅ 1 4 9
sage: E.discriminant().factor()
j-invariant :
j j j
=
− 4475809792 95211 -\frac{4475809792}{95211} − 9 5 2 1 1 4 4 7 5 8 0 9 7 9 2 = − 1 ⋅ 2 12 ⋅ 3 − 2 ⋅ 7 1 − 1 ⋅ 10 3 3 ⋅ 14 9 − 1 -1 \cdot 2^{12} \cdot 3^{-2} \cdot 71^{-1} \cdot 103^{3} \cdot 149^{-1} − 1 ⋅ 2 1 2 ⋅ 3 − 2 ⋅ 7 1 − 1 ⋅ 1 0 3 3 ⋅ 1 4 9 − 1
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.25440447848676083314971095535 -0.25440447848676083314971095535 − 0 . 2 5 4 4 0 4 4 7 8 4 8 6 7 6 0 8 3 3 1 4 9 7 1 0 9 5 5 3 5
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.25440447848676083314971095535 -0.25440447848676083314971095535 − 0 . 2 5 4 4 0 4 4 7 8 4 8 6 7 6 0 8 3 3 1 4 9 7 1 0 9 5 5 3 5
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.7314953399125632 0.7314953399125632 0 . 7 3 1 4 9 5 3 3 9 9 1 2 5 6 3 2
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.1473748366157555 2.1473748366157555 2 . 1 4 7 3 7 4 8 3 6 6 1 5 7 5 5 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 3 3 3
Mordell-Weil rank :
r r r = 3 3 3
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.62415358302393757292596940018 0.62415358302393757292596940018 0 . 6 2 4 1 5 3 5 8 3 0 2 3 9 3 7 5 7 2 9 2 5 9 6 9 4 0 0 1 8
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 3.3776087649753932984900016283 3.3776087649753932984900016283 3 . 3 7 7 6 0 8 7 6 4 9 7 5 3 9 3 2 9 8 4 9 0 0 0 1 6 2 8 3
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 2 2 2
= 2 ⋅ 1 ⋅ 1 2\cdot1\cdot1 2 ⋅ 1 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( 3 ) ( E , 1 ) / 3 ! L^{(3)}(E,1)/3! L ( 3 ) ( E , 1 ) / 3 ! ≈ 4.2162932254248967804274298468 4.2162932254248967804274298468 4 . 2 1 6 2 9 3 2 2 5 4 2 4 8 9 6 7 8 0 4 2 7 4 2 9 8 4 6 8
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
4.216293225 ≈ L ( 3 ) ( E , 1 ) / 3 ! = ? # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 3.377609 ⋅ 0.624154 ⋅ 2 1 2 ≈ 4.216293225 \displaystyle 4.216293225 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.377609 \cdot 0.624154 \cdot 2}{1^2} \approx 4.216293225 4 . 2 1 6 2 9 3 2 2 5 ≈ L ( 3 ) ( E , 1 ) / 3 ! = ? # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 3 . 3 7 7 6 0 9 ⋅ 0 . 6 2 4 1 5 4 ⋅ 2 ≈ 4 . 2 1 6 2 9 3 2 2 5
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
31737.2.a.a
q − 2 q 2 − q 3 + 2 q 4 − 2 q 5 + 2 q 6 − 4 q 7 + q 9 + 4 q 10 − 5 q 11 − 2 q 12 − 6 q 13 + 8 q 14 + 2 q 15 − 4 q 16 − 2 q 17 − 2 q 18 − 4 q 19 + O ( q 20 ) q - 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 4 q^{7} + q^{9} + 4 q^{10} - 5 q^{11} - 2 q^{12} - 6 q^{13} + 8 q^{14} + 2 q^{15} - 4 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{19} + O(q^{20}) q − 2 q 2 − q 3 + 2 q 4 − 2 q 5 + 2 q 6 − 4 q 7 + q 9 + 4 q 1 0 − 5 q 1 1 − 2 q 1 2 − 6 q 1 3 + 8 q 1 4 + 2 q 1 5 − 4 q 1 6 − 2 q 1 7 − 2 q 1 8 − 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 3 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ .
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[12219, 2, 12219, 3], [1, 0, 2, 1], [1, 2, 0, 1], [12071, 2, 12071, 3], [21157, 2, 21156, 3], [1, 1, 21157, 0]]
GL(2,Integers(21158)).subgroup(gens)
Gens := [[12219, 2, 12219, 3], [1, 0, 2, 1], [1, 2, 0, 1], [12071, 2, 12071, 3], [21157, 2, 21156, 3], [1, 1, 21157, 0]];
sub<GL(2,Integers(21158))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 21158 = 2 ⋅ 71 ⋅ 149 21158 = 2 \cdot 71 \cdot 149 2 1 1 5 8 = 2 ⋅ 7 1 ⋅ 1 4 9 , index 2 2 2 , genus 0 0 0 , and generators
( 12219 2 12219 3 ) , ( 1 0 2 1 ) , ( 1 2 0 1 ) , ( 12071 2 12071 3 ) , ( 21157 2 21156 3 ) , ( 1 1 21157 0 ) \left(\begin{array}{rr}
12219 & 2 \\
12219 & 3
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
12071 & 2 \\
12071 & 3
\end{array}\right),\left(\begin{array}{rr}
21157 & 2 \\
21156 & 3
\end{array}\right),\left(\begin{array}{rr}
1 & 1 \\
21157 & 0
\end{array}\right) ( 1 2 2 1 9 1 2 2 1 9 2 3 ) , ( 1 2 0 1 ) , ( 1 0 2 1 ) , ( 1 2 0 7 1 1 2 0 7 1 2 3 ) , ( 2 1 1 5 7 2 1 1 5 6 2 3 ) , ( 1 2 1 1 5 7 1 0 ) .
The torsion field K : = Q ( E [ 21158 ] ) K:=\Q(E[21158]) K : = Q ( E [ 2 1 1 5 8 ] ) is a degree-36788250764160000 36788250764160000 3 6 7 8 8 2 5 0 7 6 4 1 6 0 0 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 21158 Z ) \GL_2(\Z/21158\Z) GL 2 ( Z / 2 1 1 5 8 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
good
2 2 2
10579 = 71 ⋅ 149 10579 = 71 \cdot 149 1 0 5 7 9 = 7 1 ⋅ 1 4 9
3 3 3
nonsplit multiplicative
4 4 4
10579 = 71 ⋅ 149 10579 = 71 \cdot 149 1 0 5 7 9 = 7 1 ⋅ 1 4 9
71 71 7 1
nonsplit multiplicative
72 72 7 2
447 = 3 ⋅ 149 447 = 3 \cdot 149 4 4 7 = 3 ⋅ 1 4 9
149 149 1 4 9
nonsplit multiplicative
150 150 1 5 0
213 = 3 ⋅ 71 213 = 3 \cdot 71 2 1 3 = 3 ⋅ 7 1
This curve has no rational isogenies. Its isogeny class 31737a
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.1.42316.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.0.18943221352624.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
deg 8
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
73
79
83
89
97