Properties

Label 31737a1
Conductor 3173731737
Discriminant 95211-95211
j-invariant 447580979295211 -\frac{4475809792}{95211}
CM no
Rank 33
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3x234x+90y^2+y=x^3-x^2-34x+90 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3x2z34xz2+90z3y^2z+yz^2=x^3-x^2z-34xz^2+90z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x344496x+3678480y^2=x^3-44496x+3678480 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 1, -34, 90])
 
gp: E = ellinit([0, -1, 1, -34, 90])
 
magma: E := EllipticCurve([0, -1, 1, -34, 90]);
 
oscar: E = elliptic_curve([0, -1, 1, -34, 90])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ\Z \oplus \Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4,1)(4, 1)0.517783667116094252339351043700.51778366711609425233935104370\infty
(1,7)(1, 7)1.06123198837445338313212537851.0612319883744533831321253785\infty
(3,2)(3, 2)1.17337854773341639247723369581.1733785477334163924772336958\infty

Integral points

(6,6) \left(-6, 6\right) , (6,7) \left(-6, -7\right) , (5,10) \left(-5, 10\right) , (5,11) \left(-5, -11\right) , (3,12) \left(-3, 12\right) , (3,13) \left(-3, -13\right) , (0,9) \left(0, 9\right) , (0,10) \left(0, -10\right) , (1,7) \left(1, 7\right) , (1,8) \left(1, -8\right) , (3,2) \left(3, 2\right) , (3,3) \left(3, -3\right) , (4,1) \left(4, 1\right) , (4,2) \left(4, -2\right) , (5,4) \left(5, 4\right) , (5,5) \left(5, -5\right) , (10,25) \left(10, 25\right) , (10,26) \left(10, -26\right) , (14,46) \left(14, 46\right) , (14,47) \left(14, -47\right) , (22,97) \left(22, 97\right) , (22,98) \left(22, -98\right) , (28,142) \left(28, 142\right) , (28,143) \left(28, -143\right) , (289,4903) \left(289, 4903\right) , (289,4904) \left(289, -4904\right) , (301,5212) \left(301, 5212\right) , (301,5213) \left(301, -5213\right) , (1551,61062) \left(1551, 61062\right) , (1551,61063) \left(1551, -61063\right) , (710060,598332049) \left(710060, 598332049\right) , (710060,598332050) \left(710060, -598332050\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  31737 31737  = 3711493 \cdot 71 \cdot 149
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  95211-95211 = 13271149-1 \cdot 3^{2} \cdot 71 \cdot 149
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  447580979295211 -\frac{4475809792}{95211}  = 12123271110331491-1 \cdot 2^{12} \cdot 3^{-2} \cdot 71^{-1} \cdot 103^{3} \cdot 149^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.25440447848676083314971095535-0.25440447848676083314971095535
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.25440447848676083314971095535-0.25440447848676083314971095535
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.73149533991256320.7314953399125632
Szpiro ratio: σm\sigma_{m} ≈ 2.14737483661575552.1473748366157555

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 3 3
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 3 3
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.624153583023937572925969400180.62415358302393757292596940018
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.37760876497539329849000162833.3776087649753932984900016283
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 211 2\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(3)(E,1)/3! L^{(3)}(E,1)/3! ≈ 4.21629322542489678042742984684.2162932254248967804274298468
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.216293225L(3)(E,1)/3!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.3776090.6241542124.216293225\displaystyle 4.216293225 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.377609 \cdot 0.624154 \cdot 2}{1^2} \approx 4.216293225

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   31737.2.a.a

q2q2q3+2q42q5+2q64q7+q9+4q105q112q126q13+8q14+2q154q162q172q184q19+O(q20) q - 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 4 q^{7} + q^{9} + 4 q^{10} - 5 q^{11} - 2 q^{12} - 6 q^{13} + 8 q^{14} + 2 q^{15} - 4 q^{16} - 2 q^{17} - 2 q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9408
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 22 I2I_{2} nonsplit multiplicative 1 1 2 2
7171 11 I1I_{1} nonsplit multiplicative 1 1 1 1
149149 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[12219, 2, 12219, 3], [1, 0, 2, 1], [1, 2, 0, 1], [12071, 2, 12071, 3], [21157, 2, 21156, 3], [1, 1, 21157, 0]]
 
GL(2,Integers(21158)).subgroup(gens)
 
Gens := [[12219, 2, 12219, 3], [1, 0, 2, 1], [1, 2, 0, 1], [12071, 2, 12071, 3], [21157, 2, 21156, 3], [1, 1, 21157, 0]];
 
sub<GL(2,Integers(21158))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 21158=271149 21158 = 2 \cdot 71 \cdot 149 , index 22, genus 00, and generators

(122192122193),(1021),(1201),(120712120713),(211572211563),(11211570)\left(\begin{array}{rr} 12219 & 2 \\ 12219 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 12071 & 2 \\ 12071 & 3 \end{array}\right),\left(\begin{array}{rr} 21157 & 2 \\ 21156 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 21157 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[21158])K:=\Q(E[21158]) is a degree-3678825076416000036788250764160000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/21158Z)\GL_2(\Z/21158\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 10579=71149 10579 = 71 \cdot 149
33 nonsplit multiplicative 44 10579=71149 10579 = 71 \cdot 149
7171 nonsplit multiplicative 7272 447=3149 447 = 3 \cdot 149
149149 nonsplit multiplicative 150150 213=371 213 = 3 \cdot 71

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 31737a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.42316.1 Z/2Z\Z/2\Z not in database
66 6.0.18943221352624.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 71 149
Reduction type ss nonsplit ord ord ord ord ord ord ord ord ord ord ord ord ord nonsplit nonsplit
λ\lambda-invariant(s) 3,4 3 3 3 3 3 3 5 3 3 3 3 5 3 3 3 3
μ\mu-invariant(s) 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.