Properties

Label 31814a1
Conductor 3181431814
Discriminant 63628-63628
j-invariant 168515963628 \frac{1685159}{63628}
CM no
Rank 33
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+2x+12y^2+xy+y=x^3+2x+12 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+2xz2+12z3y^2z+xyz+yz^2=x^3+2xz^2+12z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+3213x+561870y^2=x^3+3213x+561870 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, 2, 12])
 
gp: E = ellinit([1, 0, 1, 2, 12])
 
magma: E := EllipticCurve([1, 0, 1, 2, 12]);
 
oscar: E = elliptic_curve([1, 0, 1, 2, 12])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ\Z \oplus \Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,3)(-1, 3)0.938458499794304348045169716700.93845849979430434804516971670\infty
(1,3)(1, 3)1.01785333380501359565536683341.0178533338050135956553668334\infty
(3,5)(3, 5)1.29556924840437191147223998311.2955692484043719114722399831\infty

Integral points

(2,1) \left(-2, 1\right) , (2,0) \left(-2, 0\right) , (1,3) \left(-1, 3\right) , (1,3) \left(-1, -3\right) , (0,3) \left(0, 3\right) , (0,4) \left(0, -4\right) , (1,3) \left(1, 3\right) , (1,5) \left(1, -5\right) , (3,5) \left(3, 5\right) , (3,9) \left(3, -9\right) , (4,7) \left(4, 7\right) , (4,12) \left(4, -12\right) , (9,23) \left(9, 23\right) , (9,33) \left(9, -33\right) , (12,36) \left(12, 36\right) , (12,49) \left(12, -49\right) , (15,51) \left(15, 51\right) , (15,67) \left(15, -67\right) , (26,120) \left(26, 120\right) , (26,147) \left(26, -147\right) , (43,261) \left(43, 261\right) , (43,305) \left(43, -305\right) , (55,381) \left(55, 381\right) , (55,437) \left(55, -437\right) , (186,2445) \left(186, 2445\right) , (186,2632) \left(186, -2632\right) , (265,4183) \left(265, 4183\right) , (265,4449) \left(265, -4449\right) , (531,11973) \left(531, 11973\right) , (531,12505) \left(531, -12505\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  31814 31814  = 2159072 \cdot 15907
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  63628-63628 = 12215907-1 \cdot 2^{2} \cdot 15907
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  168515963628 \frac{1685159}{63628}  = 22731731590712^{-2} \cdot 7^{3} \cdot 17^{3} \cdot 15907^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.39838047800450585805893483546-0.39838047800450585805893483546
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.39838047800450585805893483546-0.39838047800450585805893483546
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.72622905909306610.7262290590930661
Szpiro ratio: σm\sigma_{m} ≈ 1.78440269089764051.7844026908976405

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 3 3
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 3 3
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.883060198091148960253527462050.88306019809114896025352746205
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.64153767328241979067352782452.6415376732824197906735278245
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 21 2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(3)(E,1)/3! L^{(3)}(E,1)/3! ≈ 4.66527356206801268532299745284.6652735620680126853229974528
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.665273562L(3)(E,1)/3!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.6415380.8830602124.665273562\displaystyle 4.665273562 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.641538 \cdot 0.883060 \cdot 2}{1^2} \approx 4.665273562

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   31814.2.a.a

qq22q3+q44q5+2q64q7q8+q9+4q102q112q124q13+4q14+8q15+q16q184q19+O(q20) q - q^{2} - 2 q^{3} + q^{4} - 4 q^{5} + 2 q^{6} - 4 q^{7} - q^{8} + q^{9} + 4 q^{10} - 2 q^{11} - 2 q^{12} - 4 q^{13} + 4 q^{14} + 8 q^{15} + q^{16} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5808
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1590715907 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 31813, 0], [15909, 2, 15909, 3], [1, 0, 2, 1], [1, 2, 0, 1], [31813, 2, 31812, 3]]
 
GL(2,Integers(31814)).subgroup(gens)
 
Gens := [[1, 1, 31813, 0], [15909, 2, 15909, 3], [1, 0, 2, 1], [1, 2, 0, 1], [31813, 2, 31812, 3]];
 
sub<GL(2,Integers(31814))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 31814=215907 31814 = 2 \cdot 15907 , index 22, genus 00, and generators

(11318130),(159092159093),(1021),(1201),(318132318123)\left(\begin{array}{rr} 1 & 1 \\ 31813 & 0 \end{array}\right),\left(\begin{array}{rr} 15909 & 2 \\ 15909 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31813 & 2 \\ 31812 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[31814])K:=\Q(E[31814]) is a degree-192064488649778448192064488649778448 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/31814Z)\GL_2(\Z/31814\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 15907 15907
1590715907 nonsplit multiplicative 1590815908 2 2

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 31814a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.15907.1 Z/2Z\Z/2\Z not in database
66 6.0.4024990347643.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 15907
Reduction type nonsplit ord ord ord ord ord ss ord ord ord ord ord ord ord ord nonsplit
λ\lambda-invariant(s) 3 3 7 3 3 3 3,3 3 3 3 3 3 5 3 3 ?
μ\mu-invariant(s) 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 ?

An entry ? indicates that the invariants have not yet been computed.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.