Properties

Label 3200.p
Number of curves 22
Conductor 32003200
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 3200.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3200.p1 3200p1 [0,0,0,325,2250][0, 0, 0, -325, 2250] 1898208/51898208/5 1000000010000000 [2][2] 768768 0.218180.21818 Γ0(N)\Gamma_0(N)-optimal
3200.p2 3200p2 [0,0,0,200,4000][0, 0, 0, -200, 4000] 3456/25-3456/25 6400000000-6400000000 [2][2] 15361536 0.564760.56476  

Rank

sage: E.rank()
 

The elliptic curves in class 3200.p have rank 00.

Complex multiplication

The elliptic curves in class 3200.p do not have complex multiplication.

Modular form 3200.2.a.p

sage: E.q_eigenform(10)
 
q+2q73q9+6q11+2q13+6q172q19+O(q20)q + 2 q^{7} - 3 q^{9} + 6 q^{11} + 2 q^{13} + 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.