Properties

Label 3200.u
Number of curves 22
Conductor 32003200
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("u1")
 
E.isogeny_class()
 

Elliptic curves in class 3200.u

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3200.u1 3200g1 [0,1,0,58,138][0, -1, 0, -58, -138] 1097610976 20000002000000 [2][2] 512512 0.051711-0.051711 Γ0(N)\Gamma_0(N)-optimal
3200.u2 3200g2 [0,1,0,67,763][0, -1, 0, 67, -763] 128128 256000000-256000000 [2][2] 10241024 0.294860.29486  

Rank

sage: E.rank()
 

The elliptic curves in class 3200.u have rank 11.

Complex multiplication

The elliptic curves in class 3200.u do not have complex multiplication.

Modular form 3200.2.a.u

sage: E.q_eigenform(10)
 
q+2q34q7+q9+2q112q13+2q172q19+O(q20)q + 2 q^{3} - 4 q^{7} + q^{9} + 2 q^{11} - 2 q^{13} + 2 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.