Properties

Label 320892.o
Number of curves 22
Conductor 320892320892
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 320892.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.o1 320892o2 [0,1,0,121524,2770044][0, 1, 0, -121524, -2770044] 437640371152/246167259437640371152/246167259 111641680773452544111641680773452544 [2][2] 24192002419200 1.96131.9613  
320892.o2 320892o1 [0,1,0,90669,10520820][0, 1, 0, -90669, -10520820] 2908230909952/57143972908230909952/5714397 161974445819472161974445819472 [2][2] 12096001209600 1.61471.6147 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 320892.o have rank 11.

Complex multiplication

The elliptic curves in class 320892.o do not have complex multiplication.

Modular form 320892.2.a.o

sage: E.q_eigenform(10)
 
q+q32q5+q9+q132q15q17+2q19+O(q20)q + q^{3} - 2 q^{5} + q^{9} + q^{13} - 2 q^{15} - q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.