Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 320892.o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
320892.o1 | 320892o2 | \([0, 1, 0, -121524, -2770044]\) | \(437640371152/246167259\) | \(111641680773452544\) | \([2]\) | \(2419200\) | \(1.9613\) | |
320892.o2 | 320892o1 | \([0, 1, 0, -90669, -10520820]\) | \(2908230909952/5714397\) | \(161974445819472\) | \([2]\) | \(1209600\) | \(1.6147\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 320892.o have rank \(1\).
Complex multiplication
The elliptic curves in class 320892.o do not have complex multiplication.Modular form 320892.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.