Properties

Label 320892.z
Number of curves $1$
Conductor $320892$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("z1")
 
E.isogeny_class()
 

Elliptic curves in class 320892.z

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.z1 320892z1 \([0, 1, 0, -349142361300, 79452828254889252]\) \(-85772861682103118608759187536/59025788336118913418421\) \(-3239091696095565353807004248806656\) \([]\) \(1780289280\) \(5.3673\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 320892.z1 has rank \(1\).

Complex multiplication

The elliptic curves in class 320892.z do not have complex multiplication.

Modular form 320892.2.a.z

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2 q^{7} + q^{9} + q^{13} + q^{15} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display