y 2 = x 3 − x 2 − 122129 x − 11743422 y^2=x^3-x^2-122129x-11743422 y 2 = x 3 − x 2 − 1 2 2 1 2 9 x − 1 1 7 4 3 4 2 2
(homogenize , simplify )
y 2 z = x 3 − x 2 z − 122129 x z 2 − 11743422 z 3 y^2z=x^3-x^2z-122129xz^2-11743422z^3 y 2 z = x 3 − x 2 z − 1 2 2 1 2 9 x z 2 − 1 1 7 4 3 4 2 2 z 3
(dehomogenize , simplify )
y 2 = x 3 − 9892476 x − 8590632039 y^2=x^3-9892476x-8590632039 y 2 = x 3 − 9 8 9 2 4 7 6 x − 8 5 9 0 6 3 2 0 3 9
(homogenize , minimize )
sage: E = EllipticCurve([0, -1, 0, -122129, -11743422])
gp: E = ellinit([0, -1, 0, -122129, -11743422])
magma: E := EllipticCurve([0, -1, 0, -122129, -11743422]);
oscar: E = elliptic_curve([0, -1, 0, -122129, -11743422])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 227 , 2057 ) (-227, 2057) ( − 2 2 7 , 2 0 5 7 ) 1.5249622596704696745952945005 1.5249622596704696745952945005 1 . 5 2 4 9 6 2 2 5 9 6 7 0 4 6 9 6 7 4 5 9 5 2 9 4 5 0 0 5 ∞ \infty ∞
( − 106 , 0 ) (-106, 0) ( − 1 0 6 , 0 ) 0 0 0 2 2 2
( − 227 , ± 2057 ) (-227,\pm 2057) ( − 2 2 7 , ± 2 0 5 7 ) , ( − 106 , 0 ) \left(-106, 0\right) ( − 1 0 6 , 0 ) , ( 519 , ± 8025 ) (519,\pm 8025) ( 5 1 9 , ± 8 0 2 5 ) , ( 623 , ± 12393 ) (623,\pm 12393) ( 6 2 3 , ± 1 2 3 9 3 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
320892 320892 3 2 0 8 9 2 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 13 ⋅ 17 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 1 3 ⋅ 1 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
56594254740792912 56594254740792912 5 6 5 9 4 2 5 4 7 4 0 7 9 2 9 1 2 = 2 4 ⋅ 3 12 ⋅ 1 1 6 ⋅ 13 ⋅ 1 7 2 2^{4} \cdot 3^{12} \cdot 11^{6} \cdot 13 \cdot 17^{2} 2 4 ⋅ 3 1 2 ⋅ 1 1 6 ⋅ 1 3 ⋅ 1 7 2
sage: E.discriminant().factor()
j-invariant :
j j j
=
7107347955712 1996623837 \frac{7107347955712}{1996623837} 1 9 9 6 6 2 3 8 3 7 7 1 0 7 3 4 7 9 5 5 7 1 2 = 2 14 ⋅ 3 − 12 ⋅ 1 3 − 1 ⋅ 1 7 − 2 ⋅ 75 7 3 2^{14} \cdot 3^{-12} \cdot 13^{-1} \cdot 17^{-2} \cdot 757^{3} 2 1 4 ⋅ 3 − 1 2 ⋅ 1 3 − 1 ⋅ 1 7 − 2 ⋅ 7 5 7 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.9215733832732798119054648263 1.9215733832732798119054648263 1 . 9 2 1 5 7 3 3 8 3 2 7 3 2 7 9 8 1 1 9 0 5 4 6 4 8 2 6 3
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.49157668668744610340208233016 0.49157668668744610340208233016 0 . 4 9 1 5 7 6 6 8 6 6 8 7 4 4 6 1 0 3 4 0 2 0 8 2 3 3 0 1 6
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.970598287357582 0.970598287357582 0 . 9 7 0 5 9 8 2 8 7 3 5 7 5 8 2
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.6874065197773302 3.6874065197773302 3 . 6 8 7 4 0 6 5 1 9 7 7 7 3 3 0 2
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 1.5249622596704696745952945005 1.5249622596704696745952945005 1 . 5 2 4 9 6 2 2 5 9 6 7 0 4 6 9 6 7 4 5 9 5 2 9 4 5 0 0 5
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.26081747545205718867018863389 0.26081747545205718867018863389 0 . 2 6 0 8 1 7 4 7 5 4 5 2 0 5 7 1 8 8 6 7 0 1 8 8 6 3 3 8 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 24 24 2 4
= 3 ⋅ 2 ⋅ 2 ⋅ 1 ⋅ 2 3\cdot2\cdot2\cdot1\cdot2 3 ⋅ 2 ⋅ 2 ⋅ 1 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 2.3864208403614983071607223587 2.3864208403614983071607223587 2 . 3 8 6 4 2 0 8 4 0 3 6 1 4 9 8 3 0 7 1 6 0 7 2 2 3 5 8 7
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
2.386420840 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.260817 ⋅ 1.524962 ⋅ 24 2 2 ≈ 2.386420840 \displaystyle 2.386420840 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.260817 \cdot 1.524962 \cdot 24}{2^2} \approx 2.386420840 2 . 3 8 6 4 2 0 8 4 0 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 2 6 0 8 1 7 ⋅ 1 . 5 2 4 9 6 2 ⋅ 2 4 ≈ 2 . 3 8 6 4 2 0 8 4 0
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
320892.2.a.a
q − q 3 − 2 q 5 − 2 q 7 + q 9 + q 13 + 2 q 15 + q 17 − 2 q 19 + O ( q 20 ) q - q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + q^{13} + 2 q^{15} + q^{17} - 2 q^{19} + O(q^{20}) q − q 3 − 2 q 5 − 2 q 7 + q 9 + q 1 3 + 2 q 1 5 + q 1 7 − 2 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 5 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[57025, 42438, 15906, 15907], [1, 0, 8, 1], [1, 8, 0, 1], [38897, 37136, 28292, 31857], [1, 4, 4, 17], [58337, 8, 58336, 9], [42032, 21219, 42845, 26522], [3, 8, 28, 75], [18415, 42438, 36498, 15907], [26519, 0, 0, 58343], [5, 8, 48, 77], [29173, 37136, 0, 1]]
GL(2,Integers(58344)).subgroup(gens)
Gens := [[57025, 42438, 15906, 15907], [1, 0, 8, 1], [1, 8, 0, 1], [38897, 37136, 28292, 31857], [1, 4, 4, 17], [58337, 8, 58336, 9], [42032, 21219, 42845, 26522], [3, 8, 28, 75], [18415, 42438, 36498, 15907], [26519, 0, 0, 58343], [5, 8, 48, 77], [29173, 37136, 0, 1]];
sub<GL(2,Integers(58344))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 58344 = 2 3 ⋅ 3 ⋅ 11 ⋅ 13 ⋅ 17 58344 = 2^{3} \cdot 3 \cdot 11 \cdot 13 \cdot 17 5 8 3 4 4 = 2 3 ⋅ 3 ⋅ 1 1 ⋅ 1 3 ⋅ 1 7 , index 48 48 4 8 , genus 0 0 0 , and generators
( 57025 42438 15906 15907 ) , ( 1 0 8 1 ) , ( 1 8 0 1 ) , ( 38897 37136 28292 31857 ) , ( 1 4 4 17 ) , ( 58337 8 58336 9 ) , ( 42032 21219 42845 26522 ) , ( 3 8 28 75 ) , ( 18415 42438 36498 15907 ) , ( 26519 0 0 58343 ) , ( 5 8 48 77 ) , ( 29173 37136 0 1 ) \left(\begin{array}{rr}
57025 & 42438 \\
15906 & 15907
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
38897 & 37136 \\
28292 & 31857
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
58337 & 8 \\
58336 & 9
\end{array}\right),\left(\begin{array}{rr}
42032 & 21219 \\
42845 & 26522
\end{array}\right),\left(\begin{array}{rr}
3 & 8 \\
28 & 75
\end{array}\right),\left(\begin{array}{rr}
18415 & 42438 \\
36498 & 15907
\end{array}\right),\left(\begin{array}{rr}
26519 & 0 \\
0 & 58343
\end{array}\right),\left(\begin{array}{rr}
5 & 8 \\
48 & 77
\end{array}\right),\left(\begin{array}{rr}
29173 & 37136 \\
0 & 1
\end{array}\right) ( 5 7 0 2 5 1 5 9 0 6 4 2 4 3 8 1 5 9 0 7 ) , ( 1 8 0 1 ) , ( 1 0 8 1 ) , ( 3 8 8 9 7 2 8 2 9 2 3 7 1 3 6 3 1 8 5 7 ) , ( 1 4 4 1 7 ) , ( 5 8 3 3 7 5 8 3 3 6 8 9 ) , ( 4 2 0 3 2 4 2 8 4 5 2 1 2 1 9 2 6 5 2 2 ) , ( 3 2 8 8 7 5 ) , ( 1 8 4 1 5 3 6 4 9 8 4 2 4 3 8 1 5 9 0 7 ) , ( 2 6 5 1 9 0 0 5 8 3 4 3 ) , ( 5 4 8 8 7 7 ) , ( 2 9 1 7 3 0 3 7 1 3 6 1 ) .
The torsion field K : = Q ( E [ 58344 ] ) K:=\Q(E[58344]) K : = Q ( E [ 5 8 3 4 4 ] ) is a degree-41625591585177600 41625591585177600 4 1 6 2 5 5 9 1 5 8 5 1 7 7 6 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 58344 Z ) \GL_2(\Z/58344\Z) GL 2 ( Z / 5 8 3 4 4 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
1573 = 1 1 2 ⋅ 13 1573 = 11^{2} \cdot 13 1 5 7 3 = 1 1 2 ⋅ 1 3
3 3 3
nonsplit multiplicative
4 4 4
106964 = 2 2 ⋅ 1 1 2 ⋅ 13 ⋅ 17 106964 = 2^{2} \cdot 11^{2} \cdot 13 \cdot 17 1 0 6 9 6 4 = 2 2 ⋅ 1 1 2 ⋅ 1 3 ⋅ 1 7
11 11 1 1
additive
62 62 6 2
2652 = 2 2 ⋅ 3 ⋅ 13 ⋅ 17 2652 = 2^{2} \cdot 3 \cdot 13 \cdot 17 2 6 5 2 = 2 2 ⋅ 3 ⋅ 1 3 ⋅ 1 7
13 13 1 3
split multiplicative
14 14 1 4
24684 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 17 24684 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 17 2 4 6 8 4 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 1 7
17 17 1 7
split multiplicative
18 18 1 8
18876 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 13 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 1 8 8 7 6 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 1 3
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 320892a
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
2652a1 , its twist by − 11 -11 − 1 1 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 13 ) \Q(\sqrt{13}) Q ( 1 3 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.100672.5
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.1712789917696.8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.