Properties

Label 320892ba
Number of curves 11
Conductor 320892320892
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ba1")
 
E.isogeny_class()
 

Elliptic curves in class 320892ba

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.ba1 320892ba1 [0,1,0,191220,34992828][0, 1, 0, -191220, -34992828] 14091086416/1449981-14091086416/1449981 79568973985602816-79568973985602816 [][] 25344002534400 1.98251.9825 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 320892ba1 has rank 11.

Complex multiplication

The elliptic curves in class 320892ba do not have complex multiplication.

Modular form 320892.2.a.ba

sage: E.q_eigenform(10)
 
q+q3+q5+q9q13+q15+q174q19+O(q20)q + q^{3} + q^{5} + q^{9} - q^{13} + q^{15} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display