Properties

Label 320892ba
Number of curves $1$
Conductor $320892$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ba1")
 
E.isogeny_class()
 

Elliptic curves in class 320892ba

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.ba1 320892ba1 \([0, 1, 0, -191220, -34992828]\) \(-14091086416/1449981\) \(-79568973985602816\) \([]\) \(2534400\) \(1.9825\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 320892ba1 has rank \(1\).

Complex multiplication

The elliptic curves in class 320892ba do not have complex multiplication.

Modular form 320892.2.a.ba

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} - q^{13} + q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display