Properties

Label 320892e
Number of curves $2$
Conductor $320892$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 320892e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.e1 320892e1 \([0, -1, 0, -57273, 5060574]\) \(733001728000/36822357\) \(1043728825428432\) \([2]\) \(1290240\) \(1.6404\) \(\Gamma_0(N)\)-optimal
320892.e2 320892e2 \([0, -1, 0, 35292, 19759896]\) \(10718750000/378572337\) \(-171689980904462592\) \([2]\) \(2580480\) \(1.9870\)  

Rank

sage: E.rank()
 

The elliptic curves in class 320892e have rank \(0\).

Complex multiplication

The elliptic curves in class 320892e do not have complex multiplication.

Modular form 320892.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} - q^{13} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.