Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 320892e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
320892.e1 | 320892e1 | \([0, -1, 0, -57273, 5060574]\) | \(733001728000/36822357\) | \(1043728825428432\) | \([2]\) | \(1290240\) | \(1.6404\) | \(\Gamma_0(N)\)-optimal |
320892.e2 | 320892e2 | \([0, -1, 0, 35292, 19759896]\) | \(10718750000/378572337\) | \(-171689980904462592\) | \([2]\) | \(2580480\) | \(1.9870\) |
Rank
sage: E.rank()
The elliptic curves in class 320892e have rank \(0\).
Complex multiplication
The elliptic curves in class 320892e do not have complex multiplication.Modular form 320892.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.