y 2 = x 3 − x 2 − 16617 x + 825090 y^2=x^3-x^2-16617x+825090 y 2 = x 3 − x 2 − 1 6 6 1 7 x + 8 2 5 0 9 0
(homogenize , simplify )
y 2 z = x 3 − x 2 z − 16617 x z 2 + 825090 z 3 y^2z=x^3-x^2z-16617xz^2+825090z^3 y 2 z = x 3 − x 2 z − 1 6 6 1 7 x z 2 + 8 2 5 0 9 0 z 3
(dehomogenize , simplify )
y 2 = x 3 − 1346004 x + 597452625 y^2=x^3-1346004x+597452625 y 2 = x 3 − 1 3 4 6 0 0 4 x + 5 9 7 4 5 2 6 2 5
(homogenize , minimize )
sage: E = EllipticCurve([0, -1, 0, -16617, 825090])
gp: E = ellinit([0, -1, 0, -16617, 825090])
magma: E := EllipticCurve([0, -1, 0, -16617, 825090]);
oscar: E = elliptic_curve([0, -1, 0, -16617, 825090])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 83 , 1275 ) (-83, 1275) ( − 8 3 , 1 2 7 5 ) 3.3055082364850440849159139955 3.3055082364850440849159139955 3 . 3 0 5 5 0 8 2 3 6 4 8 5 0 4 4 0 8 4 9 1 5 9 1 3 9 9 5 5 ∞ \infty ∞
( 70 , 0 ) (70, 0) ( 7 0 , 0 ) 0 0 0 2 2 2
( − 83 , ± 1275 ) (-83,\pm 1275) ( − 8 3 , ± 1 2 7 5 ) , ( 70 , 0 ) \left(70, 0\right) ( 7 0 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
320892 320892 3 2 0 8 9 2 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 13 ⋅ 17 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 1 3 ⋅ 1 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
3514238469456 3514238469456 3 5 1 4 2 3 8 4 6 9 4 5 6 = 2 4 ⋅ 3 ⋅ 1 1 7 ⋅ 13 ⋅ 1 7 2 2^{4} \cdot 3 \cdot 11^{7} \cdot 13 \cdot 17^{2} 2 4 ⋅ 3 ⋅ 1 1 7 ⋅ 1 3 ⋅ 1 7 2
sage: E.discriminant().factor()
j-invariant :
j j j
=
17903239168 123981 \frac{17903239168}{123981} 1 2 3 9 8 1 1 7 9 0 3 2 3 9 1 6 8 = 2 14 ⋅ 3 − 1 ⋅ 1 1 − 1 ⋅ 1 3 − 1 ⋅ 1 7 − 2 ⋅ 10 3 3 2^{14} \cdot 3^{-1} \cdot 11^{-1} \cdot 13^{-1} \cdot 17^{-2} \cdot 103^{3} 2 1 4 ⋅ 3 − 1 ⋅ 1 1 − 1 ⋅ 1 3 − 1 ⋅ 1 7 − 2 ⋅ 1 0 3 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.2407691607009228005375976142 1.2407691607009228005375976142 1 . 2 4 0 7 6 9 1 6 0 7 0 0 9 2 2 8 0 0 5 3 7 5 9 7 6 1 4 2
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.18922753588491090796578488194 -0.18922753588491090796578488194 − 0 . 1 8 9 2 2 7 5 3 5 8 8 4 9 1 0 9 0 7 9 6 5 7 8 4 8 8 1 9 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9385701873317096 0.9385701873317096 0 . 9 3 8 5 7 0 1 8 7 3 3 1 7 0 9 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 3.215447460028958 3.215447460028958 3 . 2 1 5 4 4 7 4 6 0 0 2 8 9 5 8
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 3.3055082364850440849159139955 3.3055082364850440849159139955 3 . 3 0 5 5 0 8 2 3 6 4 8 5 0 4 4 0 8 4 9 1 5 9 1 3 9 9 5 5
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.79506223051093783622140969859 0.79506223051093783622140969859 0 . 7 9 5 0 6 2 2 3 0 5 1 0 9 3 7 8 3 6 2 2 1 4 0 9 6 9 8 5 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 12 12 1 2
= 3 ⋅ 1 ⋅ 2 ⋅ 1 ⋅ 2 3\cdot1\cdot2\cdot1\cdot2 3 ⋅ 1 ⋅ 2 ⋅ 1 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 7.8842542544162272132898165916 7.8842542544162272132898165916 7 . 8 8 4 2 5 4 2 5 4 4 1 6 2 2 7 2 1 3 2 8 9 8 1 6 5 9 1 6
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
7.884254254 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.795062 ⋅ 3.305508 ⋅ 12 2 2 ≈ 7.884254254 \displaystyle 7.884254254 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.795062 \cdot 3.305508 \cdot 12}{2^2} \approx 7.884254254 7 . 8 8 4 2 5 4 2 5 4 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 7 9 5 0 6 2 ⋅ 3 . 3 0 5 5 0 8 ⋅ 1 2 ≈ 7 . 8 8 4 2 5 4 2 5 4
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
320892.2.a.g
q − q 3 + 2 q 5 + q 9 − q 13 − 2 q 15 − q 17 + O ( q 20 ) q - q^{3} + 2 q^{5} + q^{9} - q^{13} - 2 q^{15} - q^{17} + O(q^{20}) q − q 3 + 2 q 5 + q 9 − q 1 3 − 2 q 1 5 − q 1 7 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 5 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 2, 2, 5], [5306, 1, 26519, 0], [1, 4, 0, 1], [19450, 1, 19447, 0], [29169, 4, 29168, 5], [1, 0, 4, 1], [25741, 4, 22310, 9], [7297, 21880, 7292, 21879], [22442, 1, 17951, 0], [3, 4, 8, 11]]
GL(2,Integers(29172)).subgroup(gens)
Gens := [[1, 2, 2, 5], [5306, 1, 26519, 0], [1, 4, 0, 1], [19450, 1, 19447, 0], [29169, 4, 29168, 5], [1, 0, 4, 1], [25741, 4, 22310, 9], [7297, 21880, 7292, 21879], [22442, 1, 17951, 0], [3, 4, 8, 11]];
sub<GL(2,Integers(29172))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 29172 = 2 2 ⋅ 3 ⋅ 11 ⋅ 13 ⋅ 17 29172 = 2^{2} \cdot 3 \cdot 11 \cdot 13 \cdot 17 2 9 1 7 2 = 2 2 ⋅ 3 ⋅ 1 1 ⋅ 1 3 ⋅ 1 7 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1 2 2 5 ) , ( 5306 1 26519 0 ) , ( 1 4 0 1 ) , ( 19450 1 19447 0 ) , ( 29169 4 29168 5 ) , ( 1 0 4 1 ) , ( 25741 4 22310 9 ) , ( 7297 21880 7292 21879 ) , ( 22442 1 17951 0 ) , ( 3 4 8 11 ) \left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
5306 & 1 \\
26519 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
19450 & 1 \\
19447 & 0
\end{array}\right),\left(\begin{array}{rr}
29169 & 4 \\
29168 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
25741 & 4 \\
22310 & 9
\end{array}\right),\left(\begin{array}{rr}
7297 & 21880 \\
7292 & 21879
\end{array}\right),\left(\begin{array}{rr}
22442 & 1 \\
17951 & 0
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right) ( 1 2 2 5 ) , ( 5 3 0 6 2 6 5 1 9 1 0 ) , ( 1 0 4 1 ) , ( 1 9 4 5 0 1 9 4 4 7 1 0 ) , ( 2 9 1 6 9 2 9 1 6 8 4 5 ) , ( 1 4 0 1 ) , ( 2 5 7 4 1 2 2 3 1 0 4 9 ) , ( 7 2 9 7 7 2 9 2 2 1 8 8 0 2 1 8 7 9 ) , ( 2 2 4 4 2 1 7 9 5 1 1 0 ) , ( 3 8 4 1 1 ) .
The torsion field K : = Q ( E [ 29172 ] ) K:=\Q(E[29172]) K : = Q ( E [ 2 9 1 7 2 ] ) is a degree-10406397896294400 10406397896294400 1 0 4 0 6 3 9 7 8 9 6 2 9 4 4 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 29172 Z ) \GL_2(\Z/29172\Z) GL 2 ( Z / 2 9 1 7 2 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
4719 = 3 ⋅ 1 1 2 ⋅ 13 4719 = 3 \cdot 11^{2} \cdot 13 4 7 1 9 = 3 ⋅ 1 1 2 ⋅ 1 3
3 3 3
nonsplit multiplicative
4 4 4
106964 = 2 2 ⋅ 1 1 2 ⋅ 13 ⋅ 17 106964 = 2^{2} \cdot 11^{2} \cdot 13 \cdot 17 1 0 6 9 6 4 = 2 2 ⋅ 1 1 2 ⋅ 1 3 ⋅ 1 7
11 11 1 1
additive
72 72 7 2
2652 = 2 2 ⋅ 3 ⋅ 13 ⋅ 17 2652 = 2^{2} \cdot 3 \cdot 13 \cdot 17 2 6 5 2 = 2 2 ⋅ 3 ⋅ 1 3 ⋅ 1 7
13 13 1 3
nonsplit multiplicative
14 14 1 4
24684 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 17 24684 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 17 2 4 6 8 4 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 1 7
17 17 1 7
nonsplit multiplicative
18 18 1 8
18876 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 13 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 1 8 8 7 6 = 2 2 ⋅ 3 ⋅ 1 1 2 ⋅ 1 3
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 320892g
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
29172c1 , its twist by − 11 -11 − 1 1 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 429 ) \Q(\sqrt{429}) Q ( 4 2 9 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.7934784.7
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.