Properties

Label 320892g1
Conductor 320892320892
Discriminant 3.514×10123.514\times 10^{12}
j-invariant 17903239168123981 \frac{17903239168}{123981}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x216617x+825090y^2=x^3-x^2-16617x+825090 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z16617xz2+825090z3y^2z=x^3-x^2z-16617xz^2+825090z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31346004x+597452625y^2=x^3-1346004x+597452625 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -16617, 825090])
 
gp: E = ellinit([0, -1, 0, -16617, 825090])
 
magma: E := EllipticCurve([0, -1, 0, -16617, 825090]);
 
oscar: E = elliptic_curve([0, -1, 0, -16617, 825090])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(83,1275)(-83, 1275)3.30550823648504408491591399553.3055082364850440849159139955\infty
(70,0)(70, 0)0022

Integral points

(83,±1275)(-83,\pm 1275), (70,0) \left(70, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  320892 320892  = 22311213172^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  35142384694563514238469456 = 243117131722^{4} \cdot 3 \cdot 11^{7} \cdot 13 \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  17903239168123981 \frac{17903239168}{123981}  = 2143111113117210332^{14} \cdot 3^{-1} \cdot 11^{-1} \cdot 13^{-1} \cdot 17^{-2} \cdot 103^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.24076916070092280053759761421.2407691607009228005375976142
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.18922753588491090796578488194-0.18922753588491090796578488194
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93857018733170960.9385701873317096
Szpiro ratio: σm\sigma_{m} ≈ 3.2154474600289583.215447460028958

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 3.30550823648504408491591399553.3055082364850440849159139955
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.795062230510937836221409698590.79506223051093783622140969859
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 12 12  = 31212 3\cdot1\cdot2\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.88425425441622721328981659167.8842542544162272132898165916
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.884254254L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7950623.30550812227.884254254\displaystyle 7.884254254 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.795062 \cdot 3.305508 \cdot 12}{2^2} \approx 7.884254254

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 320892.2.a.g

qq3+2q5+q9q132q15q17+O(q20) q - q^{3} + 2 q^{5} + q^{9} - q^{13} - 2 q^{15} - q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 645120
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV additive -1 2 4 0
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1111 22 I1I_{1}^{*} additive -1 2 7 1
1313 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 2, 5], [5306, 1, 26519, 0], [1, 4, 0, 1], [19450, 1, 19447, 0], [29169, 4, 29168, 5], [1, 0, 4, 1], [25741, 4, 22310, 9], [7297, 21880, 7292, 21879], [22442, 1, 17951, 0], [3, 4, 8, 11]]
 
GL(2,Integers(29172)).subgroup(gens)
 
Gens := [[1, 2, 2, 5], [5306, 1, 26519, 0], [1, 4, 0, 1], [19450, 1, 19447, 0], [29169, 4, 29168, 5], [1, 0, 4, 1], [25741, 4, 22310, 9], [7297, 21880, 7292, 21879], [22442, 1, 17951, 0], [3, 4, 8, 11]];
 
sub<GL(2,Integers(29172))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 29172=223111317 29172 = 2^{2} \cdot 3 \cdot 11 \cdot 13 \cdot 17 , index 1212, genus 00, and generators

(1225),(53061265190),(1401),(194501194470),(291694291685),(1041),(257414223109),(729721880729221879),(224421179510),(34811)\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 5306 & 1 \\ 26519 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19450 & 1 \\ 19447 & 0 \end{array}\right),\left(\begin{array}{rr} 29169 & 4 \\ 29168 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 25741 & 4 \\ 22310 & 9 \end{array}\right),\left(\begin{array}{rr} 7297 & 21880 \\ 7292 & 21879 \end{array}\right),\left(\begin{array}{rr} 22442 & 1 \\ 17951 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[29172])K:=\Q(E[29172]) is a degree-1040639789629440010406397896294400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/29172Z)\GL_2(\Z/29172\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 4719=311213 4719 = 3 \cdot 11^{2} \cdot 13
33 nonsplit multiplicative 44 106964=221121317 106964 = 2^{2} \cdot 11^{2} \cdot 13 \cdot 17
1111 additive 7272 2652=2231317 2652 = 2^{2} \cdot 3 \cdot 13 \cdot 17
1313 nonsplit multiplicative 1414 24684=22311217 24684 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 17
1717 nonsplit multiplicative 1818 18876=22311213 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 320892g consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 29172c1, its twist by 11-11.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(429)\Q(\sqrt{429}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.7934784.7 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.