Properties

Label 320892i1
Conductor 320892320892
Discriminant 1.639×1028-1.639\times 10^{28}
j-invariant 22394802686593526772505122467804862588949 -\frac{2239480268659352677250512}{2467804862588949}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x251230679364x+4463189855904232y^2=x^3-x^2-51230679364x+4463189855904232 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z51230679364xz2+4463189855904232z3y^2z=x^3-x^2z-51230679364xz^2+4463189855904232z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x34149685028511x+3253652955899099622y^2=x^3-4149685028511x+3253652955899099622 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -51230679364, 4463189855904232])
 
gp: E = ellinit([0, -1, 0, -51230679364, 4463189855904232])
 
magma: E := EllipticCurve([0, -1, 0, -51230679364, 4463189855904232]);
 
oscar: E = elliptic_curve([0, -1, 0, -51230679364, 4463189855904232])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  320892 320892  = 22311213172^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  16386176653665799767893593344-16386176653665799767893593344 = 128341110131117-1 \cdot 2^{8} \cdot 3^{4} \cdot 11^{10} \cdot 13^{11} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  22394802686593526772505122467804862588949 -\frac{2239480268659352677250512}{2467804862588949}  = 124341121311171104973733-1 \cdot 2^{4} \cdot 3^{-4} \cdot 11^{2} \cdot 13^{-11} \cdot 17^{-1} \cdot 10497373^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 4.70048227842264225810645081054.7004822784226422581064508105
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.24013809738403659844334308122.2401380973840365984433430812
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0170488038274291.017048803827429
Szpiro ratio: σm\sigma_{m} ≈ 6.750797691630916.75079769163091

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0329424550882976801285254741040.032942455088297680128525474104
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 66 66  = 321111 3\cdot2\cdot1\cdot11\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.17420203582764688848268129092.1742020358276468884826812909
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.174202036L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0329421.00000066122.174202036\displaystyle 2.174202036 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.032942 \cdot 1.000000 \cdot 66}{1^2} \approx 2.174202036

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 320892.2.a.i

qq3+3q54q7+q9+q133q15q17+4q19+O(q20) q - q^{3} + 3 q^{5} - 4 q^{7} + q^{9} + q^{13} - 3 q^{15} - q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 900472320
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV^{*} additive -1 2 8 0
33 22 I4I_{4} nonsplit multiplicative 1 1 4 4
1111 11 IIII^{*} additive -1 2 10 0
1313 1111 I11I_{11} split multiplicative -1 1 11 11
1717 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[883, 2, 882, 3], [443, 2, 443, 3], [613, 2, 613, 3], [105, 2, 105, 3], [1, 1, 883, 0], [1, 0, 2, 1], [1, 2, 0, 1]]
 
GL(2,Integers(884)).subgroup(gens)
 
Gens := [[883, 2, 882, 3], [443, 2, 443, 3], [613, 2, 613, 3], [105, 2, 105, 3], [1, 1, 883, 0], [1, 0, 2, 1], [1, 2, 0, 1]];
 
sub<GL(2,Integers(884))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 884=221317 884 = 2^{2} \cdot 13 \cdot 17 , index 22, genus 00, and generators

(88328823),(44324433),(61326133),(10521053),(118830),(1021),(1201)\left(\begin{array}{rr} 883 & 2 \\ 882 & 3 \end{array}\right),\left(\begin{array}{rr} 443 & 2 \\ 443 & 3 \end{array}\right),\left(\begin{array}{rr} 613 & 2 \\ 613 & 3 \end{array}\right),\left(\begin{array}{rr} 105 & 2 \\ 105 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 883 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[884])K:=\Q(E[884]) is a degree-9854543462498545434624 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/884Z)\GL_2(\Z/884\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 26741=1121317 26741 = 11^{2} \cdot 13 \cdot 17
33 nonsplit multiplicative 44 106964=221121317 106964 = 2^{2} \cdot 11^{2} \cdot 13 \cdot 17
1111 additive 3232 204=22317 204 = 2^{2} \cdot 3 \cdot 17
1313 split multiplicative 1414 24684=22311217 24684 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 17
1717 nonsplit multiplicative 1818 18876=22311213 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 320892i consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 320892j1, its twist by 11-11.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.106964.1 Z/2Z\Z/2\Z not in database
66 6.0.10114106809664.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.