Properties

Label 320892j
Number of curves 11
Conductor 320892320892
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Elliptic curves in class 320892j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.j1 320892j1 [0,1,0,423394044,3353106636504][0, -1, 0, -423394044, -3353106636504] 2239480268659352677250512/2467804862588949-2239480268659352677250512/2467804862588949 9249569534250189391104-9249569534250189391104 [][] 8186112081861120 3.50153.5015 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 320892j1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
111111
13131+T1 + T
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 13T+5T2 1 - 3 T + 5 T^{2} 1.5.ad
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1T+23T2 1 - T + 23 T^{2} 1.23.ab
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 320892j do not have complex multiplication.

Modular form 320892.2.a.j

Copy content sage:E.q_eigenform(10)
 
qq3+3q5+4q7+q9q133q15+q174q19+O(q20)q - q^{3} + 3 q^{5} + 4 q^{7} + q^{9} - q^{13} - 3 q^{15} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display