Properties

Label 320892j
Number of curves $1$
Conductor $320892$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 320892j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.j1 320892j1 \([0, -1, 0, -423394044, -3353106636504]\) \(-2239480268659352677250512/2467804862588949\) \(-9249569534250189391104\) \([]\) \(81861120\) \(3.5015\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 320892j1 has rank \(0\).

Complex multiplication

The elliptic curves in class 320892j do not have complex multiplication.

Modular form 320892.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} + 4 q^{7} + q^{9} - q^{13} - 3 q^{15} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display