Properties

Label 320892l1
Conductor 320892320892
Discriminant 5.795×1020-5.795\times 10^{20}
j-invariant 21284130951305311103841700703865772847 -\frac{2128413095130531110384}{1700703865772847}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x218717596x+31196776008y^2=x^3-x^2-18717596x+31196776008 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z18717596xz2+31196776008z3y^2z=x^3-x^2z-18717596xz^2+31196776008z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31516125303x+22737901333950y^2=x^3-1516125303x+22737901333950 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -18717596, 31196776008])
 
gp: E = ellinit([0, -1, 0, -18717596, 31196776008])
 
magma: E := EllipticCurve([0, -1, 0, -18717596, 31196776008]);
 
oscar: E = elliptic_curve([0, -1, 0, -18717596, 31196776008])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(333663439634221/139375288900,524759527245695575031/52032976605037000)(333663439634221/139375288900, 524759527245695575031/52032976605037000)31.39779855315791491855568212531.397798553157914918555682125\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  320892 320892  = 22311213172^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  579491032407976795392-579491032407976795392 = 12831311313717-1 \cdot 2^{8} \cdot 3^{13} \cdot 11^{3} \cdot 13^{7} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  21284130951305311103841700703865772847 -\frac{2128413095130531110384}{1700703865772847}  = 124313731371717292573-1 \cdot 2^{4} \cdot 3^{-13} \cdot 7^{3} \cdot 13^{-7} \cdot 17^{-1} \cdot 729257^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.91418245232667968625657762352.9141824523266796862565776235
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.85261051375379017729627031471.8526105137537901772962703147
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.02079782629000811.0207978262900081
Szpiro ratio: σm\sigma_{m} ≈ 4.8781915091148684.878191509114868

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 31.39779855315791491855568212531.397798553157914918555682125
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.162187376969170776587096027360.16218737696917077658709602736
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 11211 1\cdot1\cdot2\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 10.18465317988621508232211248910.184653179886215082322112489
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

10.184653180L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.16218731.39779921210.184653180\displaystyle 10.184653180 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.162187 \cdot 31.397799 \cdot 2}{1^2} \approx 10.184653180

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 320892.2.a.l

qq3+4q5+q7+q9q134q15+q17+O(q20) q - q^{3} + 4 q^{5} + q^{7} + q^{9} - q^{13} - 4 q^{15} + q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 31554432
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IVIV^{*} additive -1 2 8 0
33 11 I13I_{13} nonsplit multiplicative 1 1 13 13
1111 22 IIIIII additive 1 2 3 0
1313 11 I7I_{7} nonsplit multiplicative 1 1 7 7
1717 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 2, 1], [9725, 2, 9725, 3], [1, 2, 0, 1], [2653, 2, 2653, 3], [25741, 2, 25741, 3], [14587, 2, 14587, 3], [11221, 2, 11221, 3], [1, 1, 29171, 0], [29171, 2, 29170, 3]]
 
GL(2,Integers(29172)).subgroup(gens)
 
Gens := [[1, 0, 2, 1], [9725, 2, 9725, 3], [1, 2, 0, 1], [2653, 2, 2653, 3], [25741, 2, 25741, 3], [14587, 2, 14587, 3], [11221, 2, 11221, 3], [1, 1, 29171, 0], [29171, 2, 29170, 3]];
 
sub<GL(2,Integers(29172))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 29172=223111317 29172 = 2^{2} \cdot 3 \cdot 11 \cdot 13 \cdot 17 , index 22, genus 00, and generators

(1021),(9725297253),(1201),(2653226533),(257412257413),(145872145873),(112212112213),(11291710),(291712291703)\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 9725 & 2 \\ 9725 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2653 & 2 \\ 2653 & 3 \end{array}\right),\left(\begin{array}{rr} 25741 & 2 \\ 25741 & 3 \end{array}\right),\left(\begin{array}{rr} 14587 & 2 \\ 14587 & 3 \end{array}\right),\left(\begin{array}{rr} 11221 & 2 \\ 11221 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 29171 & 0 \end{array}\right),\left(\begin{array}{rr} 29171 & 2 \\ 29170 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[29172])K:=\Q(E[29172]) is a degree-6243838737776640062438387377766400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/29172Z)\GL_2(\Z/29172\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 7293=3111317 7293 = 3 \cdot 11 \cdot 13 \cdot 17
33 nonsplit multiplicative 44 106964=221121317 106964 = 2^{2} \cdot 11^{2} \cdot 13 \cdot 17
77 good 22 24684=22311217 24684 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 17
1111 additive 4242 2652=2231317 2652 = 2^{2} \cdot 3 \cdot 13 \cdot 17
1313 nonsplit multiplicative 1414 8228=2211217 8228 = 2^{2} \cdot 11^{2} \cdot 17
1717 split multiplicative 1818 18876=22311213 18876 = 2^{2} \cdot 3 \cdot 11^{2} \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 320892l consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.29172.1 Z/2Z\Z/2\Z not in database
66 6.0.24825534896448.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.