Properties

Label 320892n
Number of curves $2$
Conductor $320892$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 320892n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.n1 320892n1 \([0, 1, 0, -151169, -22672608]\) \(13478411517952/304317\) \(8625858061392\) \([2]\) \(1344000\) \(1.5963\) \(\Gamma_0(N)\)-optimal
320892.n2 320892n2 \([0, 1, 0, -145724, -24375804]\) \(-754612278352/127035441\) \(-57613064420710656\) \([2]\) \(2688000\) \(1.9428\)  

Rank

sage: E.rank()
 

The elliptic curves in class 320892n have rank \(0\).

Complex multiplication

The elliptic curves in class 320892n do not have complex multiplication.

Modular form 320892.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + q^{13} - 2 q^{15} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.