sage:E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 320892n
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
320892.n1 |
320892n1 |
[0,1,0,−151169,−22672608] |
13478411517952/304317 |
8625858061392 |
[2] |
1344000 |
1.5963
|
Γ0(N)-optimal |
320892.n2 |
320892n2 |
[0,1,0,−145724,−24375804] |
−754612278352/127035441 |
−57613064420710656 |
[2] |
2688000 |
1.9428
|
|
sage:E.rank()
The elliptic curves in class 320892n have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
11 | 1 |
13 | 1−T |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
7 |
1+2T+7T2 |
1.7.c
|
19 |
1−6T+19T2 |
1.19.ag
|
23 |
1−4T+23T2 |
1.23.ae
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 320892n do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.