Properties

Label 320892n
Number of curves 22
Conductor 320892320892
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 320892n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.n1 320892n1 [0,1,0,151169,22672608][0, 1, 0, -151169, -22672608] 13478411517952/30431713478411517952/304317 86258580613928625858061392 [2][2] 13440001344000 1.59631.5963 Γ0(N)\Gamma_0(N)-optimal
320892.n2 320892n2 [0,1,0,145724,24375804][0, 1, 0, -145724, -24375804] 754612278352/127035441-754612278352/127035441 57613064420710656-57613064420710656 [2][2] 26880002688000 1.94281.9428  

Rank

sage: E.rank()
 

The elliptic curves in class 320892n have rank 00.

Complex multiplication

The elliptic curves in class 320892n do not have complex multiplication.

Modular form 320892.2.a.n

sage: E.q_eigenform(10)
 
q+q32q52q7+q9+q132q15+q17+6q19+O(q20)q + q^{3} - 2 q^{5} - 2 q^{7} + q^{9} + q^{13} - 2 q^{15} + q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.