Properties

Label 320892p
Number of curves $1$
Conductor $320892$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 320892p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.p1 320892p1 \([0, 1, 0, 77642, -15513643]\) \(15092000000/39149487\) \(-134272643600704752\) \([]\) \(3484800\) \(1.9703\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 320892p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 320892p do not have complex multiplication.

Modular form 320892.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{3} - 5 q^{7} + q^{9} + q^{13} - q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display