Properties

Label 320892p
Number of curves 11
Conductor 320892320892
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 320892p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
320892.p1 320892p1 [0,1,0,77642,15513643][0, 1, 0, 77642, -15513643] 15092000000/3914948715092000000/39149487 134272643600704752-134272643600704752 [][] 34848003484800 1.97031.9703 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 320892p1 has rank 11.

Complex multiplication

The elliptic curves in class 320892p do not have complex multiplication.

Modular form 320892.2.a.p

sage: E.q_eigenform(10)
 
q+q35q7+q9+q13q176q19+O(q20)q + q^{3} - 5 q^{7} + q^{9} + q^{13} - q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display