sage:E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 3234.n
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3234.n1 |
3234n4 |
[1,0,1,−11100,448984] |
1285429208617/614922 |
72344958378 |
[2] |
6144 |
1.0386
|
|
3234.n2 |
3234n3 |
[1,0,1,−6200,−185272] |
223980311017/4278582 |
503370893718 |
[2] |
6144 |
1.0386
|
|
3234.n3 |
3234n2 |
[1,0,1,−810,4456] |
498677257/213444 |
25111473156 |
[2,2] |
3072 |
0.69204
|
|
3234.n4 |
3234n1 |
[1,0,1,170,536] |
4657463/3696 |
−434830704 |
[2] |
1536 |
0.34547
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 3234.n have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1−T |
7 | 1 |
11 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−2T+5T2 |
1.5.ac
|
13 |
1+2T+13T2 |
1.13.c
|
17 |
1−6T+17T2 |
1.17.ag
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 3234.n do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.