Properties

Label 3234.n
Number of curves $4$
Conductor $3234$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 3234.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3234.n1 3234n4 \([1, 0, 1, -11100, 448984]\) \(1285429208617/614922\) \(72344958378\) \([2]\) \(6144\) \(1.0386\)  
3234.n2 3234n3 \([1, 0, 1, -6200, -185272]\) \(223980311017/4278582\) \(503370893718\) \([2]\) \(6144\) \(1.0386\)  
3234.n3 3234n2 \([1, 0, 1, -810, 4456]\) \(498677257/213444\) \(25111473156\) \([2, 2]\) \(3072\) \(0.69204\)  
3234.n4 3234n1 \([1, 0, 1, 170, 536]\) \(4657463/3696\) \(-434830704\) \([2]\) \(1536\) \(0.34547\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3234.n have rank \(0\).

Complex multiplication

The elliptic curves in class 3234.n do not have complex multiplication.

Modular form 3234.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + 2 q^{5} - q^{6} - q^{8} + q^{9} - 2 q^{10} + q^{11} + q^{12} - 2 q^{13} + 2 q^{15} + q^{16} + 6 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.