Properties

Label 3234.o
Number of curves 11
Conductor 32343234
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Elliptic curves in class 3234.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3234.o1 3234h1 [1,0,1,238607,46487522][1, 0, 1, -238607, 46487522] 260607143968297/11270993184-260607143968297/11270993184 64975032778116384-64975032778116384 [][] 5880058800 1.99181.9918 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 3234.o1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
331T1 - T
7711
11111+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 13T+5T2 1 - 3 T + 5 T^{2} 1.5.ad
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 1+5T+17T2 1 + 5 T + 17 T^{2} 1.17.f
1919 16T+19T2 1 - 6 T + 19 T^{2} 1.19.ag
2323 15T+23T2 1 - 5 T + 23 T^{2} 1.23.af
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3234.o do not have complex multiplication.

Modular form 3234.2.a.o

Copy content sage:E.q_eigenform(10)
 
qq2+q3+q4+3q5q6q8+q93q10q11+q12+6q13+3q15+q165q17q18+6q19+O(q20)q - q^{2} + q^{3} + q^{4} + 3 q^{5} - q^{6} - q^{8} + q^{9} - 3 q^{10} - q^{11} + q^{12} + 6 q^{13} + 3 q^{15} + q^{16} - 5 q^{17} - q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display