Properties

Label 3234.o
Number of curves $1$
Conductor $3234$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 3234.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3234.o1 3234h1 \([1, 0, 1, -238607, 46487522]\) \(-260607143968297/11270993184\) \(-64975032778116384\) \([]\) \(58800\) \(1.9918\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3234.o1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3234.o do not have complex multiplication.

Modular form 3234.2.a.o

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + 3 q^{5} - q^{6} - q^{8} + q^{9} - 3 q^{10} - q^{11} + q^{12} + 6 q^{13} + 3 q^{15} + q^{16} - 5 q^{17} - q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display