sage:E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 3234.o
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3234.o1 |
3234h1 |
[1,0,1,−238607,46487522] |
−260607143968297/11270993184 |
−64975032778116384 |
[] |
58800 |
1.9918
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 3234.o1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1−T |
7 | 1 |
11 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1−3T+5T2 |
1.5.ad
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+5T+17T2 |
1.17.f
|
19 |
1−6T+19T2 |
1.19.ag
|
23 |
1−5T+23T2 |
1.23.af
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 3234.o do not have complex multiplication.
sage:E.q_eigenform(10)