Properties

Label 3234.t
Number of curves $4$
Conductor $3234$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 3234.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3234.t1 3234t3 \([1, 0, 0, -17249, 870519]\) \(4824238966273/66\) \(7764834\) \([2]\) \(4608\) \(0.87800\)  
3234.t2 3234t2 \([1, 0, 0, -1079, 13509]\) \(1180932193/4356\) \(512479044\) \([2, 2]\) \(2304\) \(0.53143\)  
3234.t3 3234t4 \([1, 0, 0, -589, 25955]\) \(-192100033/2371842\) \(-279044839458\) \([2]\) \(4608\) \(0.87800\)  
3234.t4 3234t1 \([1, 0, 0, -99, -15]\) \(912673/528\) \(62118672\) \([2]\) \(1152\) \(0.18485\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3234.t have rank \(0\).

Complex multiplication

The elliptic curves in class 3234.t do not have complex multiplication.

Modular form 3234.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{8} + q^{9} - 2 q^{10} - q^{11} + q^{12} + 6 q^{13} - 2 q^{15} + q^{16} - 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.