E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 3234.t
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3234.t1 |
3234t3 |
[1,0,0,−17249,870519] |
4824238966273/66 |
7764834 |
[2] |
4608 |
0.87800
|
|
3234.t2 |
3234t2 |
[1,0,0,−1079,13509] |
1180932193/4356 |
512479044 |
[2,2] |
2304 |
0.53143
|
|
3234.t3 |
3234t4 |
[1,0,0,−589,25955] |
−192100033/2371842 |
−279044839458 |
[2] |
4608 |
0.87800
|
|
3234.t4 |
3234t1 |
[1,0,0,−99,−15] |
912673/528 |
62118672 |
[2] |
1152 |
0.18485
|
Γ0(N)-optimal |
The elliptic curves in class 3234.t have
rank 0.
The elliptic curves in class 3234.t do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.