Properties

Label 3234.t
Number of curves 44
Conductor 32343234
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 3234.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3234.t1 3234t3 [1,0,0,17249,870519][1, 0, 0, -17249, 870519] 4824238966273/664824238966273/66 77648347764834 [2][2] 46084608 0.878000.87800  
3234.t2 3234t2 [1,0,0,1079,13509][1, 0, 0, -1079, 13509] 1180932193/43561180932193/4356 512479044512479044 [2,2][2, 2] 23042304 0.531430.53143  
3234.t3 3234t4 [1,0,0,589,25955][1, 0, 0, -589, 25955] 192100033/2371842-192100033/2371842 279044839458-279044839458 [2][2] 46084608 0.878000.87800  
3234.t4 3234t1 [1,0,0,99,15][1, 0, 0, -99, -15] 912673/528912673/528 6211867262118672 [2][2] 11521152 0.184850.18485 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3234.t have rank 00.

Complex multiplication

The elliptic curves in class 3234.t do not have complex multiplication.

Modular form 3234.2.a.t

sage: E.q_eigenform(10)
 
q+q2+q3+q42q5+q6+q8+q92q10q11+q12+6q132q15+q162q17+q184q19+O(q20)q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{8} + q^{9} - 2 q^{10} - q^{11} + q^{12} + 6 q^{13} - 2 q^{15} + q^{16} - 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.