Properties

Label 3234k1
Conductor 32343234
Discriminant 32286179772-32286179772
j-invariant 9938375274428 \frac{9938375}{274428}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+219x+8572y^2+xy+y=x^3+219x+8572 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+219xz2+8572z3y^2z+xyz+yz^2=x^3+219xz^2+8572z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+284445x+399093534y^2=x^3+284445x+399093534 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, 219, 8572])
 
gp: E = ellinit([1, 0, 1, 219, 8572])
 
magma: E := EllipticCurve([1, 0, 1, 219, 8572]);
 
oscar: E = elliptic_curve([1, 0, 1, 219, 8572])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(10,78)(-10, 78)0.216940910172337817786851841590.21694091017233781778685184159\infty
(17,8)(-17, 8)0022

Integral points

(17,8) \left(-17, 8\right) , (10,78) \left(-10, 78\right) , (10,69) \left(-10, -69\right) , (8,83) \left(-8, 83\right) , (8,76) \left(-8, -76\right) , (5,96) \left(5, 96\right) , (5,102) \left(5, -102\right) , (32,204) \left(32, 204\right) , (32,237) \left(32, -237\right) , (137,1548) \left(137, 1548\right) , (137,1686) \left(137, -1686\right) , (5870,446811) \left(5870, 446811\right) , (5870,452682) \left(5870, -452682\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  3234 3234  = 2372112 \cdot 3 \cdot 7^{2} \cdot 11
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  32286179772-32286179772 = 1223477112-1 \cdot 2^{2} \cdot 3^{4} \cdot 7^{7} \cdot 11^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  9938375274428 \frac{9938375}{274428}  = 223453711124332^{-2} \cdot 3^{-4} \cdot 5^{3} \cdot 7^{-1} \cdot 11^{-2} \cdot 43^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.696590342318006569431858472600.69659034231800656943185847260
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.27636473220965008312081789912-0.27636473220965008312081789912
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92985398575271790.9298539857527179
Szpiro ratio: σm\sigma_{m} ≈ 3.9140682222788773.914068222278877

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.216940910172337817786851841590.21694091017233781778685184159
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.879009166960246016475213426290.87900916696024601647521342629
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 222222 2\cdot2^{2}\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.05108877968294762058520158733.0510887796829476205852015873
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.051088780L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.8790090.21694164223.051088780\displaystyle 3.051088780 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.879009 \cdot 0.216941 \cdot 64}{2^2} \approx 3.051088780

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   3234.2.a.k

qq2+q3+q4q6q8+q9q11+q12+2q13+q16+4q17q186q19+O(q20) q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} - q^{11} + q^{12} + 2 q^{13} + q^{16} + 4 q^{17} - q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3072
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
33 44 I4I_{4} split multiplicative -1 1 4 4
77 44 I1I_{1}^{*} additive -1 2 7 1
1111 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 4, 8, 11], [613, 4, 612, 5], [90, 1, 263, 0], [1, 2, 2, 5], [1, 4, 0, 1], [309, 4, 2, 9], [57, 4, 114, 9], [81, 540, 384, 231]]
 
GL(2,Integers(616)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [613, 4, 612, 5], [90, 1, 263, 0], [1, 2, 2, 5], [1, 4, 0, 1], [309, 4, 2, 9], [57, 4, 114, 9], [81, 540, 384, 231]];
 
sub<GL(2,Integers(616))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 616=23711 616 = 2^{3} \cdot 7 \cdot 11 , index 1212, genus 00, and generators

(1041),(34811),(61346125),(9012630),(1225),(1401),(309429),(5741149),(81540384231)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 613 & 4 \\ 612 & 5 \end{array}\right),\left(\begin{array}{rr} 90 & 1 \\ 263 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 309 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 57 & 4 \\ 114 & 9 \end{array}\right),\left(\begin{array}{rr} 81 & 540 \\ 384 & 231 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[616])K:=\Q(E[616]) is a degree-34062336003406233600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/616Z)\GL_2(\Z/616\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 49=72 49 = 7^{2}
33 split multiplicative 44 1078=27211 1078 = 2 \cdot 7^{2} \cdot 11
77 additive 3232 66=2311 66 = 2 \cdot 3 \cdot 11
1111 nonsplit multiplicative 1212 294=2372 294 = 2 \cdot 3 \cdot 7^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 3234k consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 462a1, its twist by 7-7.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(7)\Q(\sqrt{-7}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z 2.0.7.1-30492.5-a1
44 4.2.54208.2 Z/4Z\Z/4\Z not in database
88 8.0.14577181696.6 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.143986855936.4 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split ss add nonsplit ord ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 4 4 1,1 - 1 1 1 1 1 1 1 1 1 1 1
μ\mu-invariant(s) 0 0 0,0 - 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.