y 2 + x y + y = x 3 + x 2 − 426108411 x − 3375030270711 y^2+xy+y=x^3+x^2-426108411x-3375030270711 y 2 + x y + y = x 3 + x 2 − 4 2 6 1 0 8 4 1 1 x − 3 3 7 5 0 3 0 2 7 0 7 1 1
(homogenize , simplify )
y 2 z + x y z + y z 2 = x 3 + x 2 z − 426108411 x z 2 − 3375030270711 z 3 y^2z+xyz+yz^2=x^3+x^2z-426108411xz^2-3375030270711z^3 y 2 z + x y z + y z 2 = x 3 + x 2 z − 4 2 6 1 0 8 4 1 1 x z 2 − 3 3 7 5 0 3 0 2 7 0 7 1 1 z 3
(dehomogenize , simplify )
y 2 = x 3 − 552236500683 x − 157457128762773882 y^2=x^3-552236500683x-157457128762773882 y 2 = x 3 − 5 5 2 2 3 6 5 0 0 6 8 3 x − 1 5 7 4 5 7 1 2 8 7 6 2 7 7 3 8 8 2
(homogenize , minimize )
sage: E = EllipticCurve([1, 1, 1, -426108411, -3375030270711])
gp: E = ellinit([1, 1, 1, -426108411, -3375030270711])
magma: E := EllipticCurve([1, 1, 1, -426108411, -3375030270711]);
oscar: E = elliptic_curve([1, 1, 1, -426108411, -3375030270711])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 648789 , 521991230 ) (648789, 521991230) ( 6 4 8 7 8 9 , 5 2 1 9 9 1 2 3 0 ) 7.0107275848039981046344300350 7.0107275848039981046344300350 7 . 0 1 0 7 2 7 5 8 4 8 0 3 9 9 8 1 0 4 6 3 4 4 3 0 0 3 5 0 ∞ \infty ∞
( − 12461 , 6230 ) (-12461, 6230) ( − 1 2 4 6 1 , 6 2 3 0 ) 0 0 0 2 2 2
( 23827 , − 11914 ) (23827, -11914) ( 2 3 8 2 7 , − 1 1 9 1 4 ) 0 0 0 2 2 2
( − 12461 , 6230 ) \left(-12461, 6230\right) ( − 1 2 4 6 1 , 6 2 3 0 ) , ( 23827 , − 11914 ) \left(23827, -11914\right) ( 2 3 8 2 7 , − 1 1 9 1 4 ) , ( 648789 , 521991230 ) \left(648789, 521991230\right) ( 6 4 8 7 8 9 , 5 2 1 9 9 1 2 3 0 ) , ( 648789 , − 522640020 ) \left(648789, -522640020\right) ( 6 4 8 7 8 9 , − 5 2 2 6 4 0 0 2 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
324870 324870 3 2 4 8 7 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 2 ⋅ 13 ⋅ 17 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 2 ⋅ 3 ⋅ 5 ⋅ 7 2 ⋅ 1 3 ⋅ 1 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
31219476031455156900000000 31219476031455156900000000 3 1 2 1 9 4 7 6 0 3 1 4 5 5 1 5 6 9 0 0 0 0 0 0 0 0 = 2 8 ⋅ 3 8 ⋅ 5 8 ⋅ 7 8 ⋅ 1 3 4 ⋅ 1 7 2 2^{8} \cdot 3^{8} \cdot 5^{8} \cdot 7^{8} \cdot 13^{4} \cdot 17^{2} 2 8 ⋅ 3 8 ⋅ 5 8 ⋅ 7 8 ⋅ 1 3 4 ⋅ 1 7 2
sage: E.discriminant().factor()
j-invariant :
j j j
=
72727020009972527154752161 265361167808100000000 \frac{72727020009972527154752161}{265361167808100000000} 2 6 5 3 6 1 1 6 7 8 0 8 1 0 0 0 0 0 0 0 0 7 2 7 2 7 0 2 0 0 0 9 9 7 2 5 2 7 1 5 4 7 5 2 1 6 1 = 2 − 8 ⋅ 3 − 8 ⋅ 5 − 8 ⋅ 7 − 2 ⋅ 1 3 − 4 ⋅ 1 7 − 2 ⋅ 7 3 3 ⋅ 571797 7 3 2^{-8} \cdot 3^{-8} \cdot 5^{-8} \cdot 7^{-2} \cdot 13^{-4} \cdot 17^{-2} \cdot 73^{3} \cdot 5717977^{3} 2 − 8 ⋅ 3 − 8 ⋅ 5 − 8 ⋅ 7 − 2 ⋅ 1 3 − 4 ⋅ 1 7 − 2 ⋅ 7 3 3 ⋅ 5 7 1 7 9 7 7 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 3.7525931670806794651550826271 3.7525931670806794651550826271 3 . 7 5 2 5 9 3 1 6 7 0 8 0 6 7 9 4 6 5 1 5 5 0 8 2 6 2 7 1
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 2.7796380925530228126024062554 2.7796380925530228126024062554 2 . 7 7 9 6 3 8 0 9 2 5 5 3 0 2 2 8 1 2 6 0 2 4 0 6 2 5 5 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9864606854599206 0.9864606854599206 0 . 9 8 6 4 6 0 6 8 5 4 5 9 9 2 0 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 5.612103363623219 5.612103363623219 5 . 6 1 2 1 0 3 3 6 3 6 2 3 2 1 9
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 7.0107275848039981046344300350 7.0107275848039981046344300350 7 . 0 1 0 7 2 7 5 8 4 8 0 3 9 9 8 1 0 4 6 3 4 4 3 0 0 3 5 0
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.033236464944624629787775118256 0.033236464944624629787775118256 0 . 0 3 3 2 3 6 4 6 4 9 4 4 6 2 4 6 2 9 7 8 7 7 7 5 1 1 8 2 5 6
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 512 512 5 1 2
= 2 3 ⋅ 2 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 2 2^{3}\cdot2\cdot2\cdot2^{2}\cdot2\cdot2 2 3 ⋅ 2 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 4 4 4
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 7.4563776514768313407734389283 7.4563776514768313407734389283 7 . 4 5 6 3 7 7 6 5 1 4 7 6 8 3 1 3 4 0 7 7 3 4 3 8 9 2 8 3
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
7.456377651 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.033236 ⋅ 7.010728 ⋅ 512 4 2 ≈ 7.456377651 \displaystyle 7.456377651 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.033236 \cdot 7.010728 \cdot 512}{4^2} \approx 7.456377651 7 . 4 5 6 3 7 7 6 5 1 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 4 2 1 ⋅ 0 . 0 3 3 2 3 6 ⋅ 7 . 0 1 0 7 2 8 ⋅ 5 1 2 ≈ 7 . 4 5 6 3 7 7 6 5 1
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
324870.2.a.dd
q + q 2 − q 3 + q 4 − q 5 − q 6 + q 8 + q 9 − q 10 − 4 q 11 − q 12 − q 13 + q 15 + q 16 − q 17 + q 18 − 4 q 19 + O ( q 20 ) q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} - q^{13} + q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20}) q + q 2 − q 3 + q 4 − q 5 − q 6 + q 8 + q 9 − q 1 0 − 4 q 1 1 − q 1 2 − q 1 3 + q 1 5 + q 1 6 − q 1 7 + q 1 8 − 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 6 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[159111, 371264, 211966, 370935], [297033, 8, 74212, 371241], [1, 16, 0, 1], [371265, 16, 371264, 17], [5, 8, 68, 92929], [114249, 16, 285668, 121], [1, 16, 4, 65], [1, 0, 16, 1], [123761, 8, 0, 1], [15, 16, 224, 232289], [65521, 16, 21846, 97]]
GL(2,Integers(371280)).subgroup(gens)
Gens := [[159111, 371264, 211966, 370935], [297033, 8, 74212, 371241], [1, 16, 0, 1], [371265, 16, 371264, 17], [5, 8, 68, 92929], [114249, 16, 285668, 121], [1, 16, 4, 65], [1, 0, 16, 1], [123761, 8, 0, 1], [15, 16, 224, 232289], [65521, 16, 21846, 97]];
sub<GL(2,Integers(371280))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 371280 = 2 4 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 13 ⋅ 17 371280 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 3 7 1 2 8 0 = 2 4 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 1 3 ⋅ 1 7 , index 768 768 7 6 8 , genus 13 13 1 3 , and generators
( 159111 371264 211966 370935 ) , ( 297033 8 74212 371241 ) , ( 1 16 0 1 ) , ( 371265 16 371264 17 ) , ( 5 8 68 92929 ) , ( 114249 16 285668 121 ) , ( 1 16 4 65 ) , ( 1 0 16 1 ) , ( 123761 8 0 1 ) , ( 15 16 224 232289 ) , ( 65521 16 21846 97 ) \left(\begin{array}{rr}
159111 & 371264 \\
211966 & 370935
\end{array}\right),\left(\begin{array}{rr}
297033 & 8 \\
74212 & 371241
\end{array}\right),\left(\begin{array}{rr}
1 & 16 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
371265 & 16 \\
371264 & 17
\end{array}\right),\left(\begin{array}{rr}
5 & 8 \\
68 & 92929
\end{array}\right),\left(\begin{array}{rr}
114249 & 16 \\
285668 & 121
\end{array}\right),\left(\begin{array}{rr}
1 & 16 \\
4 & 65
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
16 & 1
\end{array}\right),\left(\begin{array}{rr}
123761 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
15 & 16 \\
224 & 232289
\end{array}\right),\left(\begin{array}{rr}
65521 & 16 \\
21846 & 97
\end{array}\right) ( 1 5 9 1 1 1 2 1 1 9 6 6 3 7 1 2 6 4 3 7 0 9 3 5 ) , ( 2 9 7 0 3 3 7 4 2 1 2 8 3 7 1 2 4 1 ) , ( 1 0 1 6 1 ) , ( 3 7 1 2 6 5 3 7 1 2 6 4 1 6 1 7 ) , ( 5 6 8 8 9 2 9 2 9 ) , ( 1 1 4 2 4 9 2 8 5 6 6 8 1 6 1 2 1 ) , ( 1 4 1 6 6 5 ) , ( 1 1 6 0 1 ) , ( 1 2 3 7 6 1 0 8 1 ) , ( 1 5 2 2 4 1 6 2 3 2 2 8 9 ) , ( 6 5 5 2 1 2 1 8 4 6 1 6 9 7 ) .
The torsion field K : = Q ( E [ 371280 ] ) K:=\Q(E[371280]) K : = Q ( E [ 3 7 1 2 8 0 ] ) is a degree-3051534277662474240 3051534277662474240 3 0 5 1 5 3 4 2 7 7 6 6 2 4 7 4 2 4 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 371280 Z ) \GL_2(\Z/371280\Z) GL 2 ( Z / 3 7 1 2 8 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
split multiplicative
4 4 4
49 = 7 2 49 = 7^{2} 4 9 = 7 2
3 3 3
nonsplit multiplicative
4 4 4
108290 = 2 ⋅ 5 ⋅ 7 2 ⋅ 13 ⋅ 17 108290 = 2 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 1 0 8 2 9 0 = 2 ⋅ 5 ⋅ 7 2 ⋅ 1 3 ⋅ 1 7
5 5 5
nonsplit multiplicative
6 6 6
64974 = 2 ⋅ 3 ⋅ 7 2 ⋅ 13 ⋅ 17 64974 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \cdot 17 6 4 9 7 4 = 2 ⋅ 3 ⋅ 7 2 ⋅ 1 3 ⋅ 1 7
7 7 7
additive
32 32 3 2
6630 = 2 ⋅ 3 ⋅ 5 ⋅ 13 ⋅ 17 6630 = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 17 6 6 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 1 3 ⋅ 1 7
13 13 1 3
nonsplit multiplicative
14 14 1 4
24990 = 2 ⋅ 3 ⋅ 5 ⋅ 7 2 ⋅ 17 24990 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17 2 4 9 9 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 2 ⋅ 1 7
17 17 1 7
nonsplit multiplicative
18 18 1 8
19110 = 2 ⋅ 3 ⋅ 5 ⋅ 7 2 ⋅ 13 19110 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 1 9 1 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 2 ⋅ 1 3
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 4 and 8.
Its isogeny class 324870dd
consists of 8 curves linked by isogenies of
degrees dividing 16.
The minimal quadratic twist of this elliptic curve is
46410cn2 , its twist by − 7 -7 − 7 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z ⊕ Z / 2 Z \cong \Z/{2}\Z \oplus \Z/{2}\Z ≅ Z / 2 Z ⊕ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( − 7 ) \Q(\sqrt{-7}) Q ( − 7 )
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
4 4 4
Q ( 7 , − 17 ) \Q(\sqrt{7}, \sqrt{-17}) Q ( 7 , − 1 7 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
4 4 4
Q ( 7 , 17 ) \Q(\sqrt{7}, \sqrt{17}) Q ( 7 , 1 7 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.51336683776.1
Z / 4 Z ⊕ Z / 8 Z \Z/4\Z \oplus \Z/8\Z Z / 4 Z ⊕ Z / 8 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 16 Z \Z/2\Z \oplus \Z/16\Z Z / 2 Z ⊕ Z / 1 6 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 16 Z \Z/2\Z \oplus \Z/16\Z Z / 2 Z ⊕ Z / 1 6 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 24 Z \Z/2\Z \oplus \Z/24\Z Z / 2 Z ⊕ Z / 2 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.