Properties

Label 324870dd2
Conductor 324870324870
Discriminant 3.122×10253.122\times 10^{25}
j-invariant 72727020009972527154752161265361167808100000000 \frac{72727020009972527154752161}{265361167808100000000}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x2426108411x3375030270711y^2+xy+y=x^3+x^2-426108411x-3375030270711 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z426108411xz23375030270711z3y^2z+xyz+yz^2=x^3+x^2z-426108411xz^2-3375030270711z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3552236500683x157457128762773882y^2=x^3-552236500683x-157457128762773882 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -426108411, -3375030270711])
 
gp: E = ellinit([1, 1, 1, -426108411, -3375030270711])
 
magma: E := EllipticCurve([1, 1, 1, -426108411, -3375030270711]);
 
oscar: E = elliptic_curve([1, 1, 1, -426108411, -3375030270711])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(648789,521991230)(648789, 521991230)7.01072758480399810463443003507.0107275848039981046344300350\infty
(12461,6230)(-12461, 6230)0022
(23827,11914)(23827, -11914)0022

Integral points

(12461,6230) \left(-12461, 6230\right) , (23827,11914) \left(23827, -11914\right) , (648789,521991230) \left(648789, 521991230\right) , (648789,522640020) \left(648789, -522640020\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  324870 324870  = 2357213172 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3121947603145515690000000031219476031455156900000000 = 283858781341722^{8} \cdot 3^{8} \cdot 5^{8} \cdot 7^{8} \cdot 13^{4} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  72727020009972527154752161265361167808100000000 \frac{72727020009972527154752161}{265361167808100000000}  = 28385872134172733571797732^{-8} \cdot 3^{-8} \cdot 5^{-8} \cdot 7^{-2} \cdot 13^{-4} \cdot 17^{-2} \cdot 73^{3} \cdot 5717977^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.75259316708067946515508262713.7525931670806794651550826271
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.77963809255302281260240625542.7796380925530228126024062554
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98646068545992060.9864606854599206
Szpiro ratio: σm\sigma_{m} ≈ 5.6121033636232195.612103363623219

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 7.01072758480399810463443003507.0107275848039981046344300350
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0332364649446246297877751182560.033236464944624629787775118256
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 512 512  = 23222222 2^{3}\cdot2\cdot2\cdot2^{2}\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.45637765147683134077343892837.4563776514768313407734389283
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.456377651L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0332367.010728512427.456377651\displaystyle 7.456377651 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.033236 \cdot 7.010728 \cdot 512}{4^2} \approx 7.456377651

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 324870.2.a.dd

q+q2q3+q4q5q6+q8+q9q104q11q12q13+q15+q16q17+q184q19+O(q20) q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} - q^{13} + q^{15} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 150994944
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 88 I8I_{8} split multiplicative -1 1 8 8
33 22 I8I_{8} nonsplit multiplicative 1 1 8 8
55 22 I8I_{8} nonsplit multiplicative 1 1 8 8
77 44 I2I_{2}^{*} additive -1 2 8 2
1313 22 I4I_{4} nonsplit multiplicative 1 1 4 4
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.48.0.98

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[159111, 371264, 211966, 370935], [297033, 8, 74212, 371241], [1, 16, 0, 1], [371265, 16, 371264, 17], [5, 8, 68, 92929], [114249, 16, 285668, 121], [1, 16, 4, 65], [1, 0, 16, 1], [123761, 8, 0, 1], [15, 16, 224, 232289], [65521, 16, 21846, 97]]
 
GL(2,Integers(371280)).subgroup(gens)
 
Gens := [[159111, 371264, 211966, 370935], [297033, 8, 74212, 371241], [1, 16, 0, 1], [371265, 16, 371264, 17], [5, 8, 68, 92929], [114249, 16, 285668, 121], [1, 16, 4, 65], [1, 0, 16, 1], [123761, 8, 0, 1], [15, 16, 224, 232289], [65521, 16, 21846, 97]];
 
sub<GL(2,Integers(371280))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 371280=243571317 371280 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 , index 768768, genus 1313, and generators

(159111371264211966370935),(297033874212371241),(11601),(3712651637126417),(586892929),(11424916285668121),(116465),(10161),(123761801),(1516224232289),(65521162184697)\left(\begin{array}{rr} 159111 & 371264 \\ 211966 & 370935 \end{array}\right),\left(\begin{array}{rr} 297033 & 8 \\ 74212 & 371241 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 371265 & 16 \\ 371264 & 17 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 68 & 92929 \end{array}\right),\left(\begin{array}{rr} 114249 & 16 \\ 285668 & 121 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 123761 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 224 & 232289 \end{array}\right),\left(\begin{array}{rr} 65521 & 16 \\ 21846 & 97 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[371280])K:=\Q(E[371280]) is a degree-30515342776624742403051534277662474240 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/371280Z)\GL_2(\Z/371280\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 49=72 49 = 7^{2}
33 nonsplit multiplicative 44 108290=25721317 108290 = 2 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17
55 nonsplit multiplicative 66 64974=23721317 64974 = 2 \cdot 3 \cdot 7^{2} \cdot 13 \cdot 17
77 additive 3232 6630=2351317 6630 = 2 \cdot 3 \cdot 5 \cdot 13 \cdot 17
1313 nonsplit multiplicative 1414 24990=2357217 24990 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 17
1717 nonsplit multiplicative 1818 19110=2357213 19110 = 2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 324870dd consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 46410cn2, its twist by 7-7.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(7)\Q(\sqrt{-7}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
44 Q(7,17)\Q(\sqrt{7}, \sqrt{-17}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(7,17)\Q(\sqrt{7}, \sqrt{17}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.51336683776.1 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
88 deg 8 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
88 deg 8 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/24Z\Z/2\Z \oplus \Z/24\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.