Properties

Label 3264.d
Number of curves $4$
Conductor $3264$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 3264.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3264.d1 3264v4 \([0, -1, 0, -6529, 205249]\) \(939464338184/153\) \(5013504\) \([4]\) \(2048\) \(0.68727\)  
3264.d2 3264v3 \([0, -1, 0, -769, -2975]\) \(1536800264/751689\) \(24631345152\) \([2]\) \(2048\) \(0.68727\)  
3264.d3 3264v2 \([0, -1, 0, -409, 3289]\) \(1851804352/23409\) \(95883264\) \([2, 2]\) \(1024\) \(0.34070\)  
3264.d4 3264v1 \([0, -1, 0, -4, 130]\) \(-140608/111537\) \(-7138368\) \([2]\) \(512\) \(-0.0058749\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3264.d have rank \(1\).

Complex multiplication

The elliptic curves in class 3264.d do not have complex multiplication.

Modular form 3264.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} - 4 q^{11} + 2 q^{13} + 2 q^{15} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.