Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 326700.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
326700.b1 | 326700b1 | \([0, 0, 0, 0, -16105100]\) | \(0\) | \(-112049674276320000\) | \([]\) | \(3977424\) | \(1.9504\) | \(\Gamma_0(N)\)-optimal | \(-3\) |
326700.b2 | 326700b2 | \([0, 0, 0, 0, 434837700]\) | \(0\) | \(-81684212547437280000\) | \([]\) | \(11932272\) | \(2.4997\) | \(-3\) |
Rank
sage: E.rank()
The elliptic curves in class 326700.b have rank \(0\).
Complex multiplication
Each elliptic curve in class 326700.b has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).Modular form 326700.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.