Properties

Label 326700.cp
Number of curves $2$
Conductor $326700$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cp1")
 
E.isogeny_class()
 

Elliptic curves in class 326700.cp

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
326700.cp1 326700cp1 \([0, 0, 0, -217800, 39264500]\) \(-5971968/25\) \(-4783214700000000\) \([]\) \(1866240\) \(1.8636\) \(\Gamma_0(N)\)-optimal
326700.cp2 326700cp2 \([0, 0, 0, 508200, 206970500]\) \(8429568/15625\) \(-26905582687500000000\) \([]\) \(5598720\) \(2.4129\)  

Rank

sage: E.rank()
 

The elliptic curves in class 326700.cp have rank \(1\).

Complex multiplication

The elliptic curves in class 326700.cp do not have complex multiplication.

Modular form 326700.2.a.cp

sage: E.q_eigenform(10)
 
\(q - q^{7} - q^{13} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.