Properties

Label 326700.j
Number of curves $2$
Conductor $326700$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 326700.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
326700.j1 326700j1 \([0, 0, 0, 0, -100656875]\) \(0\) \(-4376940401418750000\) \([]\) \(7056720\) \(2.2558\) \(\Gamma_0(N)\)-optimal \(-3\)
326700.j2 326700j2 \([0, 0, 0, 0, 2717735625]\) \(0\) \(-3190789552634268750000\) \([]\) \(21170160\) \(2.8051\)   \(-3\)

Rank

sage: E.rank()
 

The elliptic curves in class 326700.j have rank \(1\).

Complex multiplication

Each elliptic curve in class 326700.j has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 326700.2.a.j

sage: E.q_eigenform(10)
 
\(q - 5 q^{7} + 7 q^{13} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.