sage:E = EllipticCurve("x1")
E.isogeny_class()
Elliptic curves in class 326700.x
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
326700.x1 |
326700x1 |
[0,0,0,−6724575,−6711900250] |
−175767417072/55 |
−10523072340000000 |
[] |
9953280 |
2.4363
|
Γ0(N)-optimal |
326700.x2 |
326700x2 |
[0,0,0,−5635575,−8957297250] |
−141915888/166375 |
−23205742200976500000000 |
[] |
29859840 |
2.9856
|
|
sage:E.rank()
The elliptic curves in class 326700.x have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1 |
11 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
13 |
1−5T+13T2 |
1.13.af
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1−7T+19T2 |
1.19.ah
|
23 |
1+23T2 |
1.23.a
|
29 |
1+3T+29T2 |
1.29.d
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 326700.x do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.