Properties

Label 326700.x
Number of curves 22
Conductor 326700326700
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Elliptic curves in class 326700.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
326700.x1 326700x1 [0,0,0,6724575,6711900250][0, 0, 0, -6724575, -6711900250] 175767417072/55-175767417072/55 10523072340000000-10523072340000000 [][] 99532809953280 2.43632.4363 Γ0(N)\Gamma_0(N)-optimal
326700.x2 326700x2 [0,0,0,5635575,8957297250][0, 0, 0, -5635575, -8957297250] 141915888/166375-141915888/166375 23205742200976500000000-23205742200976500000000 [][] 2985984029859840 2.98562.9856  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 326700.x have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
5511
111111
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1313 15T+13T2 1 - 5 T + 13 T^{2} 1.13.af
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
1919 17T+19T2 1 - 7 T + 19 T^{2} 1.19.ah
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 326700.x do not have complex multiplication.

Modular form 326700.2.a.x

Copy content sage:E.q_eigenform(10)
 
q4q7+5q136q17+7q19+O(q20)q - 4 q^{7} + 5 q^{13} - 6 q^{17} + 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.