Properties

Label 326700.x
Number of curves $2$
Conductor $326700$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 326700.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
326700.x1 326700x1 \([0, 0, 0, -6724575, -6711900250]\) \(-175767417072/55\) \(-10523072340000000\) \([]\) \(9953280\) \(2.4363\) \(\Gamma_0(N)\)-optimal
326700.x2 326700x2 \([0, 0, 0, -5635575, -8957297250]\) \(-141915888/166375\) \(-23205742200976500000000\) \([]\) \(29859840\) \(2.9856\)  

Rank

sage: E.rank()
 

The elliptic curves in class 326700.x have rank \(0\).

Complex multiplication

The elliptic curves in class 326700.x do not have complex multiplication.

Modular form 326700.2.a.x

sage: E.q_eigenform(10)
 
\(q - 4 q^{7} + 5 q^{13} - 6 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.