Properties

Label 326700.j
Number of curves 22
Conductor 326700326700
CM Q(3)\Q(\sqrt{-3})
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 326700.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
326700.j1 326700j1 [0,0,0,0,100656875][0, 0, 0, 0, -100656875] 00 4376940401418750000-4376940401418750000 [][] 70567207056720 2.25582.2558 Γ0(N)\Gamma_0(N)-optimal 3-3
326700.j2 326700j2 [0,0,0,0,2717735625][0, 0, 0, 0, 2717735625] 00 3190789552634268750000-3190789552634268750000 [][] 2117016021170160 2.80512.8051   3-3

Rank

sage: E.rank()
 

The elliptic curves in class 326700.j have rank 11.

Complex multiplication

Each elliptic curve in class 326700.j has complex multiplication by an order in the imaginary quadratic field Q(3)\Q(\sqrt{-3}) .

Modular form 326700.2.a.j

sage: E.q_eigenform(10)
 
q5q7+7q13+7q19+O(q20)q - 5 q^{7} + 7 q^{13} + 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.