Properties

Label 326700r
Number of curves 11
Conductor 326700326700
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 326700r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
326700.r1 326700r1 [0,0,0,19965,1098075][0, 0, 0, -19965, -1098075] 76032-76032 11575379574000-11575379574000 [][] 950400950400 1.31501.3150 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 326700r1 has rank 00.

Complex multiplication

The elliptic curves in class 326700r do not have complex multiplication.

Modular form 326700.2.a.r

sage: E.q_eigenform(10)
 
q4q7+2q17q19+O(q20)q - 4 q^{7} + 2 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display