Properties

Label 326700r
Number of curves $1$
Conductor $326700$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 326700r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
326700.r1 326700r1 \([0, 0, 0, -19965, -1098075]\) \(-76032\) \(-11575379574000\) \([]\) \(950400\) \(1.3150\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 326700r1 has rank \(0\).

Complex multiplication

The elliptic curves in class 326700r do not have complex multiplication.

Modular form 326700.2.a.r

sage: E.q_eigenform(10)
 
\(q - 4 q^{7} + 2 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display