Properties

Label 331200.kl
Number of curves 11
Conductor 331200331200
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("kl1")
 
E.isogeny_class()
 

Elliptic curves in class 331200.kl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
331200.kl1 331200kl1 [0,0,0,5550,40050250][0, 0, 0, 5550, -40050250] 25934336/95054687525934336/950546875 692948671875000000-692948671875000000 [][] 23224322322432 2.10222.1022 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 331200.kl1 has rank 11.

Complex multiplication

The elliptic curves in class 331200.kl do not have complex multiplication.

Modular form 331200.2.a.kl

sage: E.q_eigenform(10)
 
q+q72q11q174q19+O(q20)q + q^{7} - 2 q^{11} - q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display