sage:E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 33120o
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
33120.x1 |
33120o1 |
[0,0,0,888,−2563216] |
25934336/950546875 |
−2838317760000000 |
[] |
96768 |
1.6441
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 33120o1 has
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1+T |
23 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1−6T+11T2 |
1.11.ag
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1−4T+17T2 |
1.17.ae
|
19 |
1+8T+19T2 |
1.19.i
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 33120o do not have complex multiplication.
sage:E.q_eigenform(10)