Properties

Label 332010.eh
Number of curves $4$
Conductor $332010$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("eh1")
 
E.isogeny_class()
 

Elliptic curves in class 332010.eh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
332010.eh1 332010eh4 \([1, -1, 1, -4438247, -3177501109]\) \(13262655736458056369449/1687849747327022580\) \(1230442465801399460820\) \([2]\) \(18350080\) \(2.7759\)  
332010.eh2 332010eh2 \([1, -1, 1, -1118147, 404222771]\) \(212076490729573807849/26036036269059600\) \(18980270440144448400\) \([2, 2]\) \(9175040\) \(2.4293\)  
332010.eh3 332010eh1 \([1, -1, 1, -1082867, 433984979]\) \(192628775813900462569/3542105790720\) \(2582195121434880\) \([4]\) \(4587520\) \(2.0827\) \(\Gamma_0(N)\)-optimal
332010.eh4 332010eh3 \([1, -1, 1, 1637473, 2080741979]\) \(666068469803369686871/2952087953560672500\) \(-2152072118145730252500\) \([2]\) \(18350080\) \(2.7759\)  

Rank

sage: E.rank()
 

The elliptic curves in class 332010.eh have rank \(0\).

Complex multiplication

The elliptic curves in class 332010.eh do not have complex multiplication.

Modular form 332010.2.a.eh

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} + 4 q^{11} - 2 q^{13} + q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.