E = EllipticCurve("eh1")
E.isogeny_class()
Elliptic curves in class 332010.eh
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
332010.eh1 |
332010eh4 |
[1,−1,1,−4438247,−3177501109] |
13262655736458056369449/1687849747327022580 |
1230442465801399460820 |
[2] |
18350080 |
2.7759
|
|
332010.eh2 |
332010eh2 |
[1,−1,1,−1118147,404222771] |
212076490729573807849/26036036269059600 |
18980270440144448400 |
[2,2] |
9175040 |
2.4293
|
|
332010.eh3 |
332010eh1 |
[1,−1,1,−1082867,433984979] |
192628775813900462569/3542105790720 |
2582195121434880 |
[4] |
4587520 |
2.0827
|
Γ0(N)-optimal |
332010.eh4 |
332010eh3 |
[1,−1,1,1637473,2080741979] |
666068469803369686871/2952087953560672500 |
−2152072118145730252500 |
[2] |
18350080 |
2.7759
|
|
The elliptic curves in class 332010.eh have
rank 0.
The elliptic curves in class 332010.eh do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.