Properties

Label 332010.eh
Number of curves 44
Conductor 332010332010
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("eh1")
 
E.isogeny_class()
 

Elliptic curves in class 332010.eh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
332010.eh1 332010eh4 [1,1,1,4438247,3177501109][1, -1, 1, -4438247, -3177501109] 13262655736458056369449/168784974732702258013262655736458056369449/1687849747327022580 12304424658013994608201230442465801399460820 [2][2] 1835008018350080 2.77592.7759  
332010.eh2 332010eh2 [1,1,1,1118147,404222771][1, -1, 1, -1118147, 404222771] 212076490729573807849/26036036269059600212076490729573807849/26036036269059600 1898027044014444840018980270440144448400 [2,2][2, 2] 91750409175040 2.42932.4293  
332010.eh3 332010eh1 [1,1,1,1082867,433984979][1, -1, 1, -1082867, 433984979] 192628775813900462569/3542105790720192628775813900462569/3542105790720 25821951214348802582195121434880 [4][4] 45875204587520 2.08272.0827 Γ0(N)\Gamma_0(N)-optimal
332010.eh4 332010eh3 [1,1,1,1637473,2080741979][1, -1, 1, 1637473, 2080741979] 666068469803369686871/2952087953560672500666068469803369686871/2952087953560672500 2152072118145730252500-2152072118145730252500 [2][2] 1835008018350080 2.77592.7759  

Rank

sage: E.rank()
 

The elliptic curves in class 332010.eh have rank 00.

Complex multiplication

The elliptic curves in class 332010.eh do not have complex multiplication.

Modular form 332010.2.a.eh

sage: E.q_eigenform(10)
 
q+q2+q4+q5+q7+q8+q10+4q112q13+q14+q16+q174q19+O(q20)q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} + 4 q^{11} - 2 q^{13} + q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.