Properties

Label 3328.f
Number of curves 22
Conductor 33283328
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 3328.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3328.f1 3328g1 [0,1,0,29,59][0, -1, 0, -29, -59] 85184/13-85184/13 425984-425984 [][] 384384 0.19062-0.19062 Γ0(N)\Gamma_0(N)-optimal
3328.f2 3328g2 [0,1,0,29,5317][0, -1, 0, -29, 5317] 85184/371293-85184/371293 12166529024-12166529024 [][] 19201920 0.614100.61410  

Rank

sage: E.rank()
 

The elliptic curves in class 3328.f have rank 00.

Complex multiplication

The elliptic curves in class 3328.f do not have complex multiplication.

Modular form 3328.2.a.f

sage: E.q_eigenform(10)
 
qq3+3q5+3q72q9q133q157q174q19+O(q20)q - q^{3} + 3 q^{5} + 3 q^{7} - 2 q^{9} - q^{13} - 3 q^{15} - 7 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1551)\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.