Properties

Label 3330.a
Number of curves $1$
Conductor $3330$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 3330.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3330.a1 3330a1 \([1, -1, 0, 930, -4204]\) \(4516672077/2960000\) \(-58261680000\) \([]\) \(2688\) \(0.75452\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3330.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3330.a do not have complex multiplication.

Modular form 3330.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - 3 q^{7} - q^{8} + q^{10} - q^{11} - q^{13} + 3 q^{14} + q^{16} + 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display