Properties

Label 3330.e
Number of curves $1$
Conductor $3330$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 3330.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3330.e1 3330h1 \([1, -1, 0, -7785, 266341]\) \(-71581931663761/199800\) \(-145654200\) \([]\) \(3456\) \(0.79863\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3330.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 3330.e do not have complex multiplication.

Modular form 3330.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + 3 q^{7} - q^{8} + q^{10} - q^{11} + q^{13} - 3 q^{14} + q^{16} + q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display