Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 3330.j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3330.j1 | 3330i2 | \([1, -1, 0, -190314, 31995220]\) | \(1045706191321645729/323352324000\) | \(235723844196000\) | \([2]\) | \(19200\) | \(1.7343\) | |
3330.j2 | 3330i1 | \([1, -1, 0, -10314, 639220]\) | \(-166456688365729/143856000000\) | \(-104871024000000\) | \([2]\) | \(9600\) | \(1.3877\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3330.j have rank \(1\).
Complex multiplication
The elliptic curves in class 3330.j do not have complex multiplication.Modular form 3330.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.