Properties

Label 3330.x
Number of curves $1$
Conductor $3330$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 3330.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3330.x1 3330u1 \([1, -1, 1, 13, 69]\) \(357911/3330\) \(-2427570\) \([]\) \(640\) \(-0.093580\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3330.x1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3330.x do not have complex multiplication.

Modular form 3330.2.a.x

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} + q^{11} + 2 q^{13} + q^{14} + q^{16} + 7 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display